

PAISLEY PARK SUBDIVISION

A major subdivision in Missoula, Montana

Drainage Design Report

<i>Revision</i>	<i>Date</i>
First Element Review	March 3, 2025
Second Sufficiency Review	April 25, 2025
Third Sufficiency Review	May 29, 2025

Prepared for:

OO Land Holding, LLC
16309 East Marietta Avenue
Spokane Valley, WA 99216

405 Third Street NW, Suite 206
Great Falls, MT 59404
(406) 761-1955

WOITH ENGINEERING, INC.
ENGINEERS & SURVEYORS

3860 O'Leary Street, Suite A
Missoula, MT 59808
(406) 203-0869

TABLE OF CONTENTS

1. Introduction	1
1.A. Location.....	1
1.B. Description of Property	1
1.C. Previous Drainage Studies	2
1.D. General Project Description	2
1.E. State or Federal Regulations	2
1.F. Geotechnical Report.....	2
2. Existing Site Conditions	3
2.A. Major Basin Description.....	3
2.B. Sub-basin Description	3
2.C. Groundwater.....	4
2.D. Waterways and Wetlands	5
3. Stormwater Design Criteria	5
3.A. Design Concepts	5
3.B. Drainage Criteria	6
3.B.i. Application Standards or Exceptions	6
3.B.ii. Minor and Major Storm Frequencies	7
3.B.iii. Hydrologic Methods.....	7
3.B.iv. Hydraulic Methods.....	10
3.C. Down-Gradient Analysis	11
4. Proposed Design	12
4.A. General Conveyance Concepts.....	12
4.B. Proposed Drainage Patterns	12
4.C. Storm Sewer Design	13
4.D. Street Capacities.....	15

4.E. Outfall Location and Design	15
4.F. Stormwater Quality Control	16
4.G. Post-Outfall Conveyance	17
4.H. Open Channel Design	17
4.I. Easements, Maintenance, and Access	18
4.J. Flooding Hazards.....	19
4.K. Infiltration Facilities	19
5. Summary	22
5.A. Summary of Proposed Improvements	22
5.B. Floodplain Impacts.....	22
5.C. Compliance with Regulations	22
6. References.....	24

LIST OF FIGURES

Figure 4-1. Typical shallow retention swale.	16
Figure 4-2. Depth-area storage curves for CMP infiltration facilities.	19

LIST OF TABLES

Table 2-1. Pre-developed runoff flow rates.	4
Table 3-1. Rainfall depths per design storm return period.	7
Table 3-2. PCSWMM input parameters for sub-basins.	8
Table 3-3. PCSWMM input parameters for pipes.....	11
Table 4-1. Maximum impervious surface coverage by land use designation.....	13
Table 4-2. Ponding locations and depths during 100-year rainfall events.	14
Table 4-3. Infiltration facility statistics for 10-year rainfall events.	20
Table 4-4. Infiltration facility statistics for 100-year rainfall events.	21
Table 4-5. Summary of 100-year detention storage volumes.	21

This design report provides the criteria used as a basis of design for the stormwater collection system to be constructed to serve Paisley Park Subdivision located in Missoula, Montana. This report is submitted in conjunction with the Preliminary Plat and preliminary construction plans. It is organized following the outline recommended in the City of Missoula Public Works Standards and Specifications Manual, Appendix 6C. This report will be periodically updated at various design milestones, such as submission of public infrastructure plans for construction of each phase of the subdivision. Content which will be added at a later date is noted and explained in the report.

1. INTRODUCTION

1.A. LOCATION

The proposed subdivision is in the Sxʷtpqyen area of Missoula, southeast of Missoula Montana Airport, north of Mullan Road, and west of George Elmer Drive. Paisley Park is bisected by England Boulevard, which is classified as a neighborhood collector. The proposed lots within the subdivision will be accessed via the network of urban local streets, neighborhood streets, and alleys shown on the preliminary plat.

Grant Creek, which lies in an artificial channel in this area, is approximately 677 feet northwest of Paisley Park. Grant Creek confluences with the Clark Fork approximately 1.5 miles southwest of Paisley Park. The parcels adjacent to the proposed subdivision include agricultural, residential, and airport land uses. Missoula Montana Airport is immediately to the northwest, and the existing Remington Flats and Mcnett Flats subdivisions share boundaries or corners with Paisley Park.

1.B. DESCRIPTION OF PROPERTY

The existing 40.07-acre property consists primarily of brush, weed, and grass ground cover in fair condition. The existing land use is vacant land, with historic agricultural usage for grazing and hay production. The land slopes on the property are minimal, generally ranging from 0.2% - 0.5%, entirely devoid of any notable geographic features. Stormwater runoff from the parcel primarily discharges to groundwater, with Grant Creek being the ultimate receiving channel for overland discharges. All of the land is outside the 1% annual chance flood (100-year floodplain), shown on FEMA Flood Insurance Rate Map panel 30063C1190E. An existing irrigation ditch is on an adjacent parcel to the northeast, just outside the boundaries of the proposed subdivision. This ditch is owned by the City of Missoula and is no longer used for irrigation. There are no major geologic or topographic limitations on the property which may limit the capability for building or excavating storm drainage facilities using ordinary and reasonable construction techniques.

1.C. PREVIOUS DRAINAGE STUDIES

Paisley Park is within the area studied by a Drainage and Infrastructure Recommendation Memo prepared by IMEG, Inc. in support of the Sx^wtpqyen Master Plan project, published in July 2020. The purpose of this study was to provide recommendations for stormwater runoff mitigation within the Sx^wtpqyen Area, to be used as a reference during development of the area [1]. Paisley Park is also within an area studied by a Cumulative Effects Groundwater Model prepared by Newfields, Inc., published in November 2023. This technical memorandum describes updates made to numerical groundwater models of the Grant Creek Area [2], which are used in this report to determine separation from infiltrative facilities to the seasonal groundwater table.

1.D. GENERAL PROJECT DESCRIPTION

The proposed subdivision will create 100 lots, in addition to a network of streets and common areas throughout the project. The net acreages of lots, streets and roads, and common areas are depicted on the preliminary plat. The development will include up to 671 residential dwelling units. Paisley Park will be accessed via the network of urban local streets, neighborhood streets, and alleys depicted on the preliminary plat. The proposed storm drainage system will include lot grading, street and gutter flow, underground piping, and underground infiltration systems.

Due to the presence of high seasonal groundwater across the property, the proposed storm drainage system consists of a combination of surface retention and infiltration, shallow drainage piping, and shallow underground infiltration systems.

1.E. STATE OR FEDERAL REGULATIONS

The project is regulated under The Missoula City Public Works Standards and Specifications Manual, Chapter 6 – Storm Water System, and the Montana Department of Environmental Quality, Circular 8, Montana Standards for Subdivision Storm Drainage.

1.F. GEOTECHNICAL REPORT

A geotechnical investigation of the property, has been completed by Allwest, Inc. It is dated June 7, 2024, and included in the Subdivision Application submittal for the project as Attachment 22. Paisley Park is also within an area studied by a Cumulative Effects Groundwater Model prepared by Newfields, Inc., published in November 2023 [2].

2. EXISTING SITE CONDITIONS

2.A. MAJOR BASIN DESCRIPTION

The subdivision property is depicted on FEMA Flood Insurance Rate Map 30063C1190E, which covers the lower reach of the Grant Creek drainage basin. The major basin is comprised of multiple drainage ways which convey stormwater to the west and into Grant Creek. In the past, before any development within the area, all stormwater flowed from northeast to southwest. In addition, multiple natural drainage paths exist across the basin to convey stormwater to Grant Creek, however, none of these existing drainage paths cross the subject property. The existing and recently proposed developments within the focus area have individual drainage plans to mitigate the increase in stormwater due to additional impervious areas.

The partially constructed Remington Flats Subdivision is located to the south of the proposed subdivision. The stormwater design incorporates drywell sumps to infiltrate stormwater runoff into the groundwater. The difference between the pre- and post-development 100-year storm will be retained and infiltrated entirely onsite without overtopping. Drywell sumps have been a common method for treating and mitigating stormwater in large storm events in the major basin, however, due to high groundwater elevations in areas closer to Grant Creek, drywell sumps cannot be used for stormwater mitigation within Paisley Park.

2.B. SUB-BASIN DESCRIPTION

The subdivision property forms approximately 16 existing sub-basins, all of which drain runoff to various shallow depressions across the site. These shallow depressions hold and infiltrate stormwater. The site does not have any well-defined existing drainage channels or offsite discharge points. If the shallow sub-basins scattered across the site were to fill with stormwater, and overtop, they would eventually discharge to one of seven low points along the northern and western boundaries of the property. The existing sub-basin conditions, major offsite discharge points, and major infiltrative depressions are shown on Attachment 8.14 of the subdivision application.

The existing sub-basins discharge very little water onto the neighboring properties, because the shallow depressions scattered across the site must fill with water and overtop before discharging to neighboring properties. With the relatively rapid infiltration rates on the site, offsite discharge of overland flow is relatively rare in the existing condition. Similarly, the existing property to the east does not have any well-defined drainage channels that would discharge upgradient flows onto the

subject property. Runoff on the parcel to the east largely remains in shallow depressions on the property to the east, except in very large rainfall events. The design of Paisley Park Subdivision will direct these flows to designated emergency overflow points, should they ever be large enough to overtop the depressions on the parcel to the east.

The existing drainage sub-basins were modeled in PCSWMM software to determine the pre-developed runoff flow rates for the property. The PCSWMM modeling method and input parameters are discussed in detail in Section 3 of this report. Table 2-1 shows the calculated pre-developed runoff flow rates from each existing sub-basin.

Table 2-1. Pre-developed runoff flow rates.

PRE-DEVELOPED SUB-BASIN	AREA (ACRES)	PEAK RUNOFF FLOW RATE (CFS)		
		2-YEAR	10-YEAR	100-YEAR
E1	0.08	0.00	0.02	0.08
E2	1.76	0.00	0.05	0.28
E3	0.70	0.00	0.04	0.18
E4	0.65	0.00	0.03	0.16
E5	0.25	0.00	0.02	0.08
E6	0.24	0.00	0.02	0.12
E7	0.15	0.00	0.03	0.11
E8	0.17	0.00	0.02	0.07
E9	3.83	0.00	0.06	0.35
E10	7.70	0.00	0.09	0.47
E11	1.81	0.00	0.05	0.28
E12	2.72	0.00	0.07	0.39
E13	11.17	0.00	0.12	0.64
E14	0.90	0.00	0.04	0.21
E15	2.25	0.00	0.08	0.44
E16	5.69	0.00	0.14	0.74
Total	40.07	0.00	0.88	4.60

2.C. GROUNDWATER

The proposed subdivision is in an area where the water table in the local shallow aquifer has been modeled conceptually and numerically in multiple studies completed and updated periodically between 2004 and 2023. The most recent update to the groundwater modeling was published in a Technical Memorandum dated November 1, 2023. This effort updated the numerical modeling based on new boring logs, groundwater elevation data, and creek flow data, incorporated the location of the proposed Grant Creek realignment channel, and updated the predictive models to evaluate the cumulative effects of realigning Grant Creek and using sumps to manage stormwater

for existing and future development after removing the Flynn-Lowney Ditch system, both during average and high Grant Creek flows.

The predictive simulations completed by Newfields included (1) 2-year high-flow creek event in Grant Creek, stormwater discharge for a 100-year storm event, and the estimated full build-out sump configuration, (2) 100-year high-flow creek event in Grant Creek, stormwater discharge for a 2-year storm event, and the current sump configuration, and (3) 100-year high-flow creek event in Grant Creek, stormwater discharge for a 2-year storm event, and the estimated full build-out sump configuration. Generally, the study found that under all scenarios, the predicted depth to the high-water table is less than 10 feet below ground surface within 1,000 to 2,000 feet of Grant Creek and 10 feet to 20 feet below ground surface west of George Elmer Drive along the Flynn-Lowney Ditch.

Figure 16 of the Newfields Technical Memorandum shows the simulated groundwater elevation during a 2-year creek flow event with a 2-year storm drainage discharge from full development in the study area flowing to sumps. These groundwater elevation contours are compared to the existing and proposed finished ground elevations within Paisley Park Subdivision on Attachment 8.14 and Attachment 8.15 of the subdivision application, respectively. Full-depth (8') infiltrative drywells require 14 feet of separation between finished ground and the high groundwater table to meet the City's requirement to provide four feet of separation between the bottom of infiltrative facilities and the water table. Attachment 8.15 shows that full-depth sumps are not feasible in Paisley Park due to insufficient depth to the high groundwater table. The considerations to address this in the design of the subdivision and drainage system are discussed in Section 3 of this report.

2.D. WATERWAYS AND WETLANDS

The subdivision property does not contain any surface waterways or wetlands, and there are no surface waterways or wetlands immediately adjacent to the site. The National Wetlands Inventory (NWI) map is included with the subdivision application as Attachment 8.12. Impacts to waterways and wetlands within the larger vicinity of the project, such as Grant Creek, will be mitigated through the use of onsite retention and infiltration as the primary method of stormwater management.

3. STORMWATER DESIGN CRITERIA

3.A. DESIGN CONCEPTS

Increases in stormwater runoff quantities caused by the urbanization and construction of new impervious surfaces in Paisley Park Subdivision will be mitigated by construction of a stormwater

management system consisting of surface gutters, surface retention basins, underground stormwater piping, and a perforated corrugated metal pipe (CMP) underground detention and infiltration system. Stormwater quality will be controlled through the use of surface retention swales, swirl technology (hydrodynamic separation), and isolation rows. The system will be designed such that each lot within the subdivision can discharge into the right-of-way without needing to provide retention or detention storage onsite. All stormwater quantity and quality controls will be implemented for the entire subdivision, not on a lot-by-lot basis. Each element of the proposed stormwater mitigation system is discussed in detail in Section 4 of this report.

3.B. DRAINAGE CRITERIA

3.B.i. Application Standards or Exceptions

The application standard for the proposed subdivision is the Missoula City Public Works Standards and Specifications Manual (Public Works Manual). The project must also comply with the Montana Department of Environmental Quality Circular 8, Montana Standards for Subdivision Storm Drainage (DEQ-8). In addition to these regulatory standards, the Sx^wtpqyen form-based code includes the following stormwater management standards:

1. Manage rainfall as close to where it falls as possible, approximating the natural pre-development hydrology (water quality and water quantity) by using natural, decentralized stormwater management practices that do not impede or negatively alter the historic flow of stormwater runoff.
2. Recognize stormwater as an integral part of the built environment.
3. Establish watershed sensitive planning and design criteria at the neighborhood scale of development to support shared flood control solutions.
4. Encourage incorporation of Light Imprint Best Management Practices (BMPs) at the Block, street, and site scales of development, appropriate to land use context and site conditions.

The proposed design requires two exceptions from the standards contained in the Public Works Manual. In order to provide adequate slopes and cover depths in the piped conveyance system, a reduction in required separation from the bottom of the proposed infiltrative facilities to the high seasonal water table to three feet is proposed. With this exception, the proposed design will still meet the DEQ-8 minimum separation requirement, which is three feet. To mitigate the impacts of

this reduction, the design includes additional pretreatment of stormwater prior to infiltration. These pretreatment methods are discussed in detail in Section 4.F of this report.

The other exception required is a reduction in minimum flow velocity in the storm drainage pipes during the minor rainfall event from three feet per second to two feet per second in upstream storm drain lateral pipes with low flows. Due to the shallow bury depths required due to topography, it is preferable to use larger pipes in these scenarios to mitigate freezing concerns, rather than using a smaller pipe to meet the three feet per second minimum flow velocity.

3.B.ii. Minor and Major Storm Frequencies

This report will include analysis of the 2-year, 10-year, and 100-year rainfall events. The 2-year and 10-year events are considered minor storms, with the 100-year event considered a major storm. The Minor Drainage System consists of curbs, gutters, ditches, stormwater piping, and infiltration facilities, and is designed to carry runoff from the peak flow rate from the 10-year storm event without overtopping roadways or surcharging stormwater piping.

The Major Drainage System consists of pathways that are provided for runoff to safely flow to natural or engineered channels. The Major Drainage System is designed to safely carry runoff from events larger than the 100-year storm, without inundating structures, overtopping roadways, or interrupting traffic and emergency services. Flows from the 100-year storm event will be carried in the piping system and pond in the street system, within acceptable depth criteria.

3.B.iii. Hydrologic Methods

The design storm depths, shown in Table 3-1, are based on the 24-hour storm duration at the Missoula International Airport as published in MDT Hydraulics Manual Chapter 7, Appendix B, as published in the Public Works Manual.

Table 3-1. Rainfall depths per design storm return period.

	2-YEAR, 24-HOUR STORM	10-YEAR, 24-HOUR STORM	100-YEAR, 24-HOUR STORM
Depth (inches)	1.17	1.66	2.28

(a) Design Storms

Design storms were created using SCS synthetic hydrographs. The Type II distribution is a typical time distribution from rainfall records in Montana, however, Type I and Type IA distributions can be appropriate for certain parts of Montana. The appropriate distribution was determined by

comparing the 6-hour rainfall total to the 24-hour rainfall total, shown in Equation 1. The 6-hour rainfall was determined from the MDT Hydraulics Manual.

$$\text{Equation 1. } D_1 = \frac{P_6}{P_{24}} = \frac{1.53}{2.28} = 0.67$$

Where D_1 = Distribution selection factor
 P_6 = 100-year, 6-hour rainfall depth (inches)
 P_{24} = 100-year, 24-hour rainfall depth (inches)

If the distribution selection factor ranges between 0.518 and 0.639, the Type I distribution should be selected. The Type II distribution should be selected for all values between 0.640 and 0.767. Therefore, the SCS Type II 24-hour storm was selected as the design storm for this project. The design storm hyetograph for each of the 2-year, 10-year, and 100-year design storms were prepared using the SCS dimensionless rainfall distribution and the rainfall depths shown above within PCSWMM, a stormwater modeling software which runs on the United States Environmental Protection Agency's SWMM5 engine. All stormwater modeling and calculations for this project were prepared using PCSWMM. Table 3-2 shows the input parameters that were used in the PCSWMM model for sub-basins.

Table 3-2. PCSWMM input parameters for sub-basins.

CONSTANT	VALUE
Manning's roughness for impervious areas	0.012
Manning's roughness for pervious areas	0.20
Depth of surface storage in impervious areas (inches)	0.033
Depth of surface storage in pervious areas (inches)	0.1
Percent of impervious area with zero surface storage	25%
Subarea routing method	Pervious to impervious
Maximum sod area infiltration rate (inches per hour)	1.0
Minimum sod area infiltration rate (inches per hour)	0.15
Horton infiltration rate decay constant	0.00115

(b) *Stormwater Quality Storm & Treatment Methods*

Historical rainfall data supports the characterization that, on average, 90 percent of the rainfall events occurring across Montana's MS4 areas are 0.5 inches or less. Therefore, the Montana Department of Environmental Quality MS4 General Permit requires that all regulated projects implement post-construction stormwater best management practices that are designed to infiltrate, evapotranspire, and/or capture for reuse the post-construction runoff generated from the first 0.5 inches of rainfall from a 24-hour storm preceded by 48 hours of no measurable

precipitation. Any portion of this runoff not infiltrated, evapotranspired, or captured for reuse must be treated by best management practices (BMPs) expected to remove 80 percent total suspended solids (TSS). The stormwater quality controls implemented by this project are discussed in detail in Section 4.F of this report.

(c) Detention & Infiltration Calculation Methods

The proposed underground detention and infiltration systems were modelled in PCSWMM using storage nodes with seepage. The storage nodes utilize depth-area storage curves for the specific systems, provided by manufacturer data.

The infiltration rate (conductivity) applied to the storage nodes in PCSWMM has been estimated using available field data. During a geotechnical investigation which was conducted on the project site, the infiltration rate in two test pits was measured at a depth of approximately 10 feet below ground surface. The infiltration rates in these deep soils, which were classified as poorly graded gravel (GP-GM) with silt and sand, were extremely rapid.

However, due to the shallow groundwater discussed in Section 2.C of this report, the proposed infiltration facilities must infiltrate runoff into the soil layer approximately four feet below ground surface, which is generally silty sand (SM) across the test pits. A site-specific infiltration test was not conducted in this soil layer during the original geotechnical investigation. For the purposes of this report, Missoula Public Health Regulation 1, which provides estimated percolation rates for septic systems installed in undisturbed soil layers at approximately four feet below ground surface, is used to estimate the infiltration rate in the silty sand layer as a proof of concept.

Regulation 1 lists the estimated percolation rate for medium sand and sandy loam soils as six to ten inches per hour. Due to the lack of surface runoff expression on the site and the extremely rapid infiltration rates in the deep soil layer, the infiltration rate in the silty sand layer is expected to be approximately ten inches per hour. Thus, an infiltration rate of ten inches per hour is applied to the infiltration facilities modeled in PCSWMM. Safety factors are applied to the modelled infiltration rate in accordance with the City Public Works Manual, and as discussed in Section 4.K of this report.

This infiltration rate will need to be thoroughly confirmed through field testing of at least five test pits across the footprint of each infiltration facility at the time of final design. The measured infiltration rates will be averaged to produce an accurate design infiltration rate representative of a facility with a large infiltrative footprint. If the field-measured infiltration rate is found to be

significantly less than anticipated in this design, the system will need to be revised to discharge stormwater offsite through pumping, rather than through infiltration.

(d) Detention Storage Release Rate Calculation Method

The proposed underground detention systems will be constructed with perforated corrugated metal pipes; thus, they will only be discharged into groundwater, and will not release flows onto the surface, into overland channels, or into any other piping systems.

3.B.iv. Hydraulic Methods

(a) Design Standards

The proposed stormwater conveyance system includes overland flow, channelized surface flow in streets and gutters, and flow through underground stormwater piping. The conveyance system is designed in accordance with the requirements of the Public Works Manual. Specifically, this report will show that:

- Streets can convey the 10-year storm within the parameters outlined in Table 6-3 of the Public Works Manual.
- Gutters can convey the 10-year storm without overtopping the curb.
- Storm drainage piping will operate in non-pressurized flow conditions during the 10-year storm event.
- Streets can convey the 100-year storm event within the parameters outlined in Table 6-4 of the Public Works Manual.

(b) Hydraulic Models

A hydraulic model of the proposed piping system was prepared using PCSWMM. The hydraulic model uses a dynamic wave routing method to account for backflow and ponding within pipes, due to the shallow pipe grades required to meet the depth to groundwater constraint.

(c) Methods used to determine channel and storm sewer capacities

Storm drainage piping capacities were calculated using PCSWMM and are presented in Section 4.C of this report. Conveyance capacities for gutters and streets were calculated as presented in Section 4.D of this report. Table 3-3 shows the PCSWMM input constants for pipes.

Table 3-3. PCSWMM input parameters for pipes.

CONSTANT	VALUE
Manning's roughness for PVC pipe	0.01
Entry loss coefficient; inlet	0.20
Entry loss coefficient; 0°-5° deflection	0.20
Entry loss coefficient; 5°-22.5° deflection	0.26
Entry loss coefficient; 22.5°-45° deflection	0.42
Entry loss coefficient; 45°-90° deflection	0.72
Exit loss coefficient	0.20

(d) Methods used for design of hydraulic structures, outlet protection, and erosion control

Specific methods used to design any special hydraulic structures, outlet protection, and erosion control, which is applicable at the entrances to surface retention swales from gutters, will be completed and added to this report at the time of permitting each phase of the project.

(e) Methods used for designing stormwater pond outlet structures

All of the proposed detention storage facilities in the proposed subdivision discharge to groundwater through infiltration. Therefore, the facilities do not have surface outlet structures. Their outflow rates to groundwater are calculated and discussed in detail in Section 4.K of this report.

3.C. DOWN-GRADIENT ANALYSIS

A down-gradient analysis has been conducted to identify and evaluate potential adverse impacts to downstream properties due to increased runoff from the proposed subdivision. The scope of the down-gradient analysis is limited to emergency overflows from Paisley Park, since all runoff from the 2-, 10-, and 100-year design storms will be retained and infiltrated onsite.

Two adjacent properties could be impacted by emergency overflows, both of which are owned by the Missoula County Airport Authority. Emergency overflows could occur if the piping and infiltration system fail completely, or if a rainfall event exceeds the 100-year design depth or intensity. The existing site topography has approximately seven locations where overflows from the subdivision property will flow onto these adjacent parcels. These locations are shown on Attachment 8.14 of the subdivision application. These locations connect to shallow depressions running from southeast to northwest across the adjacent properties, which convey any existing

overflows to Grant Creek. These shallow depressions are visible in aerial imagery and highlighted on Attachment 8.14 of the subdivision application.

The proposed subdivision is designed such that any overflows from emergency situations will discharge at seven locations along the subdivision boundary, which are deliberately located in approximately the same locations as the existing overflow points to ensure emergency overflows can continue to Grant Creek. These overflow locations are shown on Attachment 8.18 of the subdivision application. There are no known existing or potential off-site drainage problems which may be exacerbated by the project. These overland conveyance routes are in good condition, with no constrictions or low-capacity zones. They intersect with the Grant Creek floodplain and eventually, the creek channel itself. The floodplain boundary is shown on Attachment 8.14 of the subdivision application.

4. PROPOSED DESIGN

4.A. GENERAL CONVEYANCE CONCEPTS

In general, during the minor rainfall events, stormwater runoff will flow from lots within the subdivision, onto streets, into the underground storm drainage piping system, to the detention basins, where it will ultimately infiltrate into the ground. During major rainfall events, the underground piping system will convey the 10-year runoff flows as normal, but the 100-year runoff flows will be stored and conveyed within the streets, which function as additional system capacity for these large and infrequent events.

4.B. PROPOSED DRAINAGE PATTERNS

The proposed grading of the 40-acre subdivision divides the property into 76 sub-basins, each of which collects runoff at an inlet to the underground piping system. This section provides an overview of the input assumptions and sub-basin hydrology results from PCSWMM, which utilizes the EPA's SWMM 5 engine. The SWMM 5 engine requires input of the area, equivalent width, average slope, and percentage of impervious cover to calculate the runoff from each sub-basin. The area of the sub-basins was calculated from the proposed grading plan. The equivalent width is determined by dividing the area of the sub-basin by the length of the longest possible flow path. The average slope of each sub-basin, which must be estimated since specific grading plans for each lot do not exist, is assumed to be 2%.

Each sub-basin will contain a combination of the various land uses permitted by the Sx^{wtpqyen} area form-based code, which specifies maximum impervious coverage for each land use designation. These maximum impervious coverages are shown in Table 4-1. The impervious coverage for rights-of-way is an average calculated from the site plan and boulevard widths shown on the typical sections of the rights-of-way. The proposed sub-basins are shown as a map on Attachment 8.17 of the subdivision application.

Table 4-1. Maximum impervious surface coverage by land use designation.

LAND USE	MAXIMUM IMPERVIOUS COVERAGE
OS Open Space Transect	5%
T3 Neighborhood Edge Transect	60%
T4 Neighborhood General Transect	70%
T5 Mixed-Use Center Transect	90%
Right-of-way – Alley	95%
Right-of-way – Street with Boulevards	75%

The PCSWMM input parameters for each sub-basin are detailed in the PCSWMM status output files in the appendices, in the section titled “Subcatchment Summary” in each output file. The impervious percentage is a weighted average calculated from the area of each land use within each sub-basin and the maximum impervious coverage for each land use. Overall, the proposed subdivision has an area of 40 acres and an estimated impervious coverage of 67%.

Using the input parameters for each sub-basin, PCSWMM calculates the proportion of rainfall infiltrated for each sub-basin to determine the total runoff volume and peak runoff flow rate for each sub-basin. This process is repeated for each design rainfall event. The total runoff volume and peak runoff flow rates are detailed in the PCSWMM status output files in the appendices, in the section titled “Subcatchment Runoff Summary” in each output file.

4.C. STORM SEWER DESIGN

The proposed storm sewer pipes are designed to convey the runoff produced by the minor rainfall events from the sub-basin outlets to the proposed underground detention and infiltration basins without pressurizing (surcharging). The storm sewer pipes are modelled as circular conduits in PCSWMM, which require slope, Manning’s roughness coefficient, and length as input parameters. The lengths and slopes were designed based on the proposed grading plan. The farthest downstream invert elevation of each pipe run matches the invert elevation of the proposed infiltration basins, which was established to ensure three feet of separation from the bottom of the infiltration basins’ drain rock to the seasonal high groundwater table. The names, slopes, sizes,

and lengths of each storm sewer pipe are shown on the storm drain plan and profile sheets in the preliminary construction plans. Pipes C1, C2, C3, C4, C5, and C6 are used only within the PCSWMM model to represent the inlets and headers of the proposed underground detention systems, and thus do not show on the plan and profile sheets.

The storm sewer pipes were sized iteratively to ensure that they do not surcharge during the minor rainfall events, and that the minimum and maximum flow velocities are met during the 10-year storm. During the ten-year storm, all pipes have flow velocities between two and ten feet per second, except for pipes SP10, SP39, and SP51, SP82, SP83, and SP85. These pipes are inlet laterals at the far upstream end of the system, which would need to be downsized to eight inches to achieve the minimum velocity. The PCSWMM output statistics for each pipe are detailed in the PCSWMM status output files in the appendices, in the section titled “Link Flow Summary” in each output file. The section titled “Conduit Surcharge Summary” in each output file shows that the pipes do not surcharge during the 2-year and 10-year rainfall events.

During the 100-year rainfall event, most of the storm sewer pipes in the system surcharge and operate in a pressurized state. These pipes are detailed in the PCSWMM status output file for the 100-year event in the appendices, in the section titled “Conduit Surcharge Summary”. To provide storage for the 100-year storm event, a shallow surface basin six inches deep will be provided in each common area across the footprint of each underground detention and infiltration basin. During the 100-year event, runoff will pond in the streets around the inlets, in the piping system, and primarily, in these shallow surface basins until it infiltrates through the infiltration basin. Table 4-2 shows the volume of water ponded in each location that sees surface ponding during the 100-year event.

Table 4-2. Ponding locations and depths during 100-year rainfall events.

PONDING LOCATION	PONDING VOLUME (CUBIC FEET)	PONDING DEPTH (INCHES)
CB82	29.88	0.3
CB88	25.43	0.25
CMP South	13,088	6.00
CMP North	13,627	6.00

Both detention basins will infiltrate all stored stormwater with 48 hours of collection. When accounting for continued inflows after the peak intensity of the storm events, both basins will fully infiltrate their stored water and return to an empty state approximately 24 hours after reaching their full storage volume. This is shown in the PCSWMM status output file for the 100-year event in the

appendices, on the graph titled “Depth of Storage” for each of the detention and infiltration basins. In all design storm events, both major and minor, all runoff will be captured and infiltrated onsite, which ensures that post-development runoff rates onto adjacent properties do not exceed the pre-development runoff rates.

4.D. STREET CAPACITIES

The subdivision is designed such that streets and common areas function as an emergency overflow pathway, should a storm sewer pipe within the system become clogged or a rainfall event exceeds the 100-year depth or intensity. The layout of the overflow pathways, as well as the offsite emergency overflow discharge points, is depicted by Attachment 8.18 of the subdivision application. Equation 2 shows the depth of water that will flow in the gutter, should a street need to convey the full 100-year runoff flow rate for all basins including England Boulevard and south, which is 35.84 cubic feet per second, or 17.92 cubic feet per second on each side of the street.

$$\text{Equation 2. } y = 1.24 \left(\frac{QnS_x}{s^{0.5}} \right)^{\frac{3}{8}} = 1.24 \left(\frac{(17.92)(0.013)(0.02)}{0.005^{0.5}} \right)^{\frac{3}{8}} = 0.44 \text{ ft}$$

Where y = Depth of water in gutter cross-section (feet)
 Q = Gutter flow rate (cfs)
 n = Manning's roughness coefficient (0.013 for smooth asphalt or concrete)
 s = Longitudinal slope of gutter (feet per foot)
 S_x = Pavement cross-slope (feet per foot)

The calculation shows that the local streets can convey the full 100-year runoff flow rates in a situation where the underground piping has failed completely, without overtopping the curbs. Both lanes and the crown would be inundated in this scenario. England Boulevard, which is a neighborhood collector, does not serve as an overflow pathway. Therefore, at least one full lane will always be free from water on England Boulevard.

4.E. OUTFALL LOCATION AND DESIGN

The proposed storm drainage system does not include any engineered outfalls, since all runoff will be collected onsite at infiltration basins and discharged to groundwater. The emergency overflow pathways include seven points where floodwaters will discharge to adjacent properties to the north and west in emergency situations. These points are deliberately located in approximately the same locations as the existing offsite overflow points shown on Attachment 8.14 of the subdivision application, so that emergency overflows will flow across the adjacent properties to Grant Creek in the same manner they do at present.

4.F. STORMWATER QUALITY CONTROL

The proposed storm drainage system includes two elements of stormwater quality control – pretreatment and regulatory compliance. As discussed in Section 3.B.i of this report, in order to provide adequate slopes and cover depths in the piped conveyance system, a reduction in required separation from the bottom of the proposed infiltrative facilities to the high seasonal water table to three feet is proposed. To mitigate the impacts of this reduction and help ensure the long-term viability of the infiltration basins, three stages of pretreatment are proposed to ensure as much sediment as possible is removed from the water prior to entering the infiltration basins.

The first stage of pretreatment will occur at each inlet into the storm sewer system. Each inlet structure will have a two-foot deep sediment trap below the invert elevation of all pipes. In addition to the sediment traps, many inlets will have a shallow retention swale on the surface surrounding the inlet. A typical cross-section of a shallow retention swale is shown in Figure 4-1.

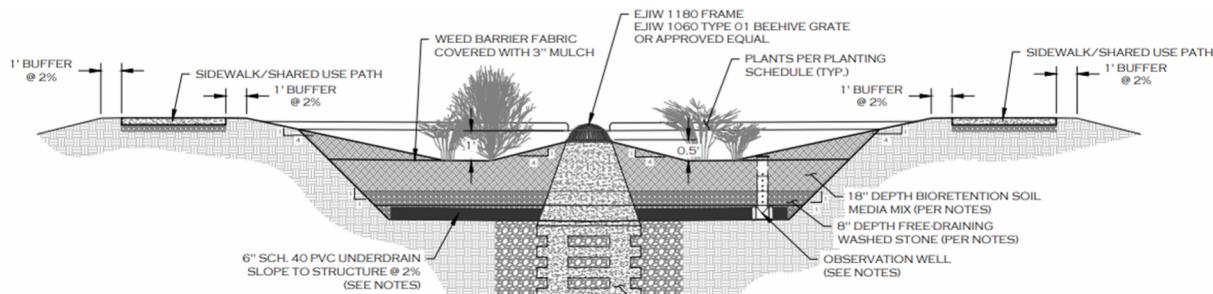


Figure 4-1. Typical shallow retention swale.

The second stage of pretreatment is the use of hydrodynamic separators at each inlet to the underground infiltration basins. The proposed hydrodynamic separators, shown on the storm drain plan and profiles, will use continuous deflective separation – a combination of swirl concentration and indirect screening to screen, separate and trap debris, sediment, and hydrocarbons from stormwater runoff. The hydrodynamic separators will retain all captured pollutants, even at high flow rates, and provide easy access for maintenance.

The final stage of pretreatment is the provision of an isolator row inside each of the underground infiltration basins. An isolator row is a row of pipe within the underground basin which is solid-walled, instead of perforated, and has its invert elevation set one to two feet lower than the perforated pipes comprising the remainder of the infiltration basin. The isolator row fills prior to the remainder of the system in water quality events, allowing remaining sediment to settle out of water

without clogging the perforated sections of the system. The isolator row will have a riser on both ends to allow access with a hydro jet and vacuum truck to remove accumulated sediment.

To ensure regulatory compliance in the storm water quality controls, the runoff reduction volume (RRV), or the volume of storm water runoff generated from the first 0.5 inches of rainfall, was calculated using the procedure outlined in Chapter 3 of the Montana Post-Construction Storm Water BMP Design Guidance Manual, shown in Equation 3.

$$\text{Equation 3. } RRV = \frac{PRVA}{12} = \frac{0.5*0.653*40.07}{12} = 1.09 \text{ acre - feet}$$

Where RRV = Runoff reduction volume (acre-feet)
 P = Water quality storm rainfall depth (inches)
 Rv = Dimensionless runoff coefficient, $Rv = 0.05 + 0.9(I)$
 I = Percent impervious cover draining to the facility (67%)
 A = Area draining to the facility (acres)

Regulatory compliance in the storm water quality controls is accomplished since 100% of the runoff reduction volume is captured onsite and infiltrated at the underground infiltration basins.

4.G. POST-OUTFALL CONVEYANCE

The manner, location, and direction of post-outfall conveyance will not be changed by the proposed subdivision. All stormwater runoff from the minor and major design storms will be detained and infiltrated onsite. Emergency overflows will flow overland in approximately the same locations as the existing overflows, where they will continue overland to Grant Creek in the same manner they do at present.

4.H. OPEN CHANNEL DESIGN

The emergency overflow pathways introduced in Section 4.D include two reaches which flow across the common areas oriented east to west across the subdivision. These common areas will be graded in a shallow V-shape, with a minimum width of 48 feet and minimum depth of 18 inches, which will have the conveyance capacity calculated in Equation 4.

$$\text{Equation 4. } Q = \frac{1.486AR^{2/3}S^{1/2}}{n} = \frac{1.486*36*0.75^{2/3}*0.005^{1/2}}{0.07} = 44.69 \text{ cfs}$$

Where Q = Overland flow rate (cfs)
 A = Cross-sectional area of flow channel (ft^2) = 36 ft^2
 R = Hydraulic radius (feet) = 0.75 ft

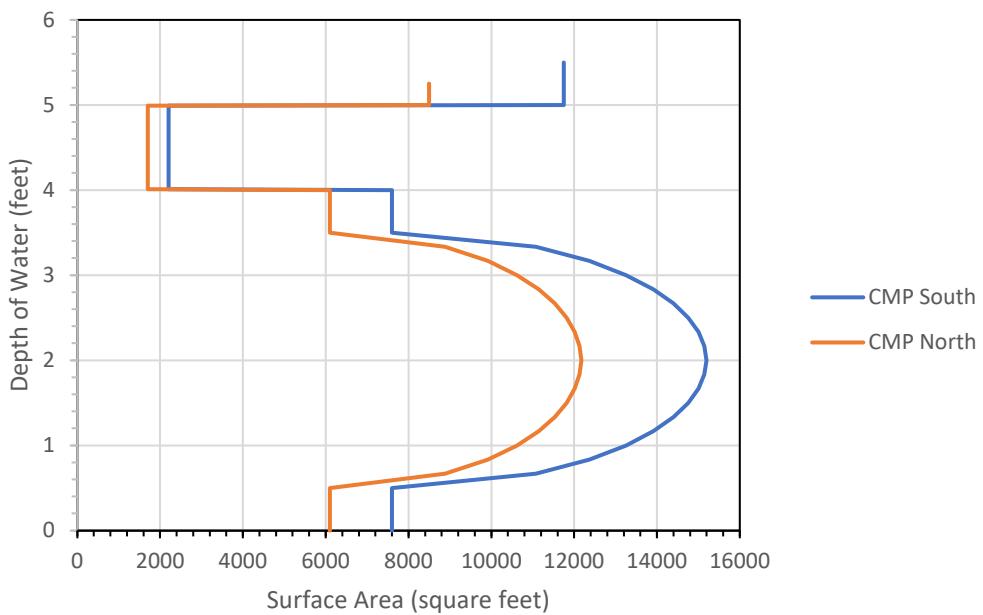
s = Longitudinal slope of flow channel (feet per foot)

n = Manning's roughness for sluggish reaches

The calculation shows that the east-west common areas can convey the full 100-year runoff flow rates in a situation where the underground piping has failed completely, without inundating adjacent alleys or buildings.

4.I. EASEMENTS, MAINTENANCE, AND ACCESS

Maintenance will be required for the stormwater infrastructure proposed within the rights-of-way and within the common areas. Maintenance of the infiltration basins and hydrodynamic separators in the common areas will be the responsibility of the property owner's association, with a maintenance agreement and covenant filed which will allow the City to conduct emergency maintenance, should the property owner's association not complete required items. Maintenance of the infrastructure within the right-of-way should be completed by the City. The City will be granted easements across all common areas containing stormwater infrastructure for maintenance access. Structures within the common areas which require access, such as the isolator rows and hydrodynamic separators, will be located adjacent to a trail, which will allow maintenance crews to access the structures by vehicle without driving across grass. The following is a list of maintenance tasks which should be completed for the proposed infrastructure:


- Concrete gutter pans or flowlines in the concrete should be swept or cleaned of debris and sediment on a quarterly or as needed basis.
- Building gutters and downspouts should be cleaned seasonally to prevent debris from entering the storm sewer pipes that carry drainage from downspouts to the infiltration area.
- Storm sewer pipes should be flushed or jetted on as needed basis when clogging becomes apparent.
- Isolator rows should be inspected annually and flushed or jetted on as needed basis when sediment buildup becomes apparent.
- Hydrodynamic separators should be inspected and vacuumed at least once annually.
- Sediment traps in catch basins and manholes should be vacuumed on an as needed basis.
- Infiltration and retention swales should be inspected for vegetation cover and bare areas on a quarterly basis.
- Infiltration and retention swales should be inspected for sediment buildup on an annual basis.

4.J. FLOODING HAZARDS

In general, building floors will be elevated at least three to six inches above the sidewalk elevation to ensure positive drainage in front yards. The sidewalk elevation is generally four inches above the top of curb, meaning that buildings will have at least seven to ten inches of freeboard between the high-water elevation in the street and their floor elevation during emergency overflow scenarios with the streets flowing full. Specific minimum finished floor elevations will be analyzed during the design of each phase. The emergency overflow pathways designed in the subdivision will ensure that no buildings are inundated should the piping system become completely clogged or rainfall intensities or depths exceed the 100-year event.

4.K. INFILTRATION FACILITIES

The proposed storm drainage system includes three detention and infiltration facilities. Two of the infiltration facilities are underground storage piping systems, consisting of perforated corrugated metal pipe (CMP) surrounded by drain rock. One facility, denoted as “CMP South” drains the area including and south of England Boulevard, and the other, denoted as “CMP North”, drains the area north of England Boulevard. The depth-area curves shown in Figure 4-2 were used in PCSWMM to model the storage function of the CMP pipe infiltration facilities.

Figure 4-2. Depth-area storage curves for CMP infiltration facilities.

The third infiltration facility is the proposed trail street along the northwestern boundary of the subdivision. The trail street is a right-of-way section which includes an asphalt trail and shallow retention swales, which will collect and infiltrate runoff from sub-basins 23 and 25. The infiltration rate was estimated as discussed in Section 3.B.iii(c) of this report, at 10 inches per hour. Using the estimated infiltration rate, the infiltrative outflow rates, in cubic feet per second, for CMP North, CMP South, and the trail street are calculated in Equations 4, 5, and 6, respectively. The CMP infiltration facilities use a safety factor of 2.0, since they have significant pretreatment facilities, while the trail street uses a safety factor of 3.0 since it does not have a pretreatment facility.

$$\text{Equation 5. } Q_i = 0.5 \frac{iA}{43,200} = 0.5 * \frac{10*19,000}{43,200} = 2.20 \text{ cfs}$$

Where Q_i = Infiltration flow rate (cfs)
 i = Estimated infiltration rate (inches per hour)
 A = Infiltrative footprint of facility (square feet)

$$\text{Equation 6. } Q_i = 0.5 \frac{iA}{43,200} = 0.5 * \frac{10*14,000}{43,200} = 1.62 \text{ cfs}$$

Where Q_i = Infiltration flow rate (cfs)
 i = Estimated infiltration rate (inches per hour)
 A = Infiltrative footprint of facility (square feet)

$$\text{Equation 7. } Q_i = 0.33 \frac{iA}{43,200} = 0.33 * \frac{10*5,100}{43,200} = 0.39 \text{ cfs}$$

Where Q_i = Infiltration flow rate (cfs)
 i = Estimated infiltration rate (inches per hour)
 A = Infiltrative footprint of facility (square feet)

The hydrographs for each infiltration facility, within PCSWMM's storage calculator module, were used to calculate the storage volume required to detain the 10-year and 100-year rainfall volume until it can be infiltrated at the infiltrative outflow rate. Table 4-3 compares the peak inflow rate, infiltrative outflow rate, and required storage volume calculated from the hydrographs.

Table 4-3. Infiltration facility statistics for 10-year rainfall events.

FACILITY	PEAK INFLOW (CFS)	INFILTRATION OUTFLOW (CFS)	VOLUME REQUIRED (FT ³)	SYSTEM VOLUME AVAILABLE (FT ³)
CMP South	27.50	2.20	41,632	48,289
CMP North	21.19	1.62	34,159	35,497
Trail Street	3.51	0.39	4,597	8,550

The proposed infiltration facilities have sufficient storage capacity to detain the 10-year rainfall event without accounting for extra storage capacity provided by the piping system and surface storage. Table 4-4 shows the same statistics for the infiltration facilities during the 100-year event.

Table 4-4. Infiltration facility statistics for 100-year rainfall events.

FACILITY	PEAK INFLOW (CFS)	INFILTRATION OUTFLOW (CFS)	VOLUME REQUIRED (FT ³)	SYSTEM VOLUME AVAILABLE (FT ³)
CMP South	37.80	2.20	61,377	48,289
CMP North	34.52	1.62	52,331	35,497
Trail Street	5.07	0.39	7,389	8,550

During the 100-year rainfall event, the storage volume provided at the underground infiltration facilities is insufficient to detain the 100-year runoff volume without accounting for the additional surface ponding discussed in Section 4.C. Table 4-5 shows how the surface ponding storage volumes augment the underground infiltration facility storage volume to detain the 100-year event. The volume required shown in Table 4-2 is calculated within PCSWMM in its storage calculator module by using the inflow and outflow hydrographs for each storage to determine the storage volume required to release the inflows at the outflow rate determined from the infiltration rate. This value neglects the additional storage that, in practice, exists in the pipe system, to show that the facilities are large enough to detain the required volume without needing to account for storage in the conveyance pipes.

Table 4-5. Summary of 100-year detention storage volumes.

FACILITY	VOLUME REQUIRED (FT ³)	VOLUME PROVIDED AT FACILITY (FT ³)	SURFACE PONDING VOLUME (FT ³)	TOTAL STORAGE VOLUME (FT ³)
CMP South	61,377	48,289	13,088	61,377
CMP North	52,331	38,704	13,627	52,331

The calculations show that the proposed infiltration facilities are an effective method of detaining and disposing of stormwater runoff from the proposed subdivision.

5. SUMMARY

5.A. SUMMARY OF PROPOSED IMPROVEMENTS

This drainage report shows that the pre-development flow rates discharging to adjacent properties will not be exceeded in the post-development conditions. It is possible to mitigate the additional runoff produced by the 10-year and 100-year rainfall events onsite using detention storage and shallow infiltration. The design of the storm drainage system ensures that the roads are not inundated during the 2-year event, no curbs are overtapped during the 10-year event, and no buildings are inundated during the 100-year event. The proposed drainage system includes lot drainage, curbs and gutters, retention swales, infiltration swales, storm sewer piping, hydrodynamic separators, and underground CMP infiltration galleries. The street system in the subdivision is also designed to ensure that an emergency overflow pathway is provided, to ensure that no buildings are inundated should the piping system fail, or a rainfall event exceeds the 100-year design storm.

5.B. FLOODPLAIN IMPACTS

The proposed subdivision and storm drainage system do not impact the floodplain.

5.C. COMPLIANCE WITH REGULATIONS

This report, and the proposed storm drainage system, have been prepared in accordance with Chapter 6 of the Missoula City Public Works Standards and Specifications Manual. The design also meets the requirements of the Montana Department of Environmental Quality's Circular 8. This report is intended to summarize the proposed system for the purposes of a subdivision preliminary plat application and approval and will be updated with additional information when each phase of the subdivision is proposed for construction approval. All construction will be in accordance with the Montana Public Works Standard Specifications and City of Missoula Modifications. The proposed stormwater management system also meets the stated standards of the form-based code as follows:

1. Manage rainfall as close to where it falls as possible, approximating the natural pre-development hydrology (water quality and water quantity) by using natural, decentralized stormwater management practices that do not impede or negatively alter the historic flow of stormwater runoff.

The design approximates the natural pre-development hydrology to the greatest extent possible by using infiltration as the primary method of stormwater discharge. The existing topography indicates that infiltration is the primary driver of natural hydrology. The use of retention swales at inlets and multiple infiltration basins promotes the goal of a decentralized system.

2. Recognize stormwater as an integral part of the built environment.

The design recognizes stormwater as an integral part of the built environment through the use of landscaped retention swales at intersections. These landscaped swales contribute to the overall aesthetics of the subdivision. The proposed underground detention and infiltration systems contribute to the recognition of stormwater as an integral part of the built environment by ensuring that usable common space is not lost to surface stormwater detention basins.

3. Establish watershed sensitive planning and design criteria at the neighborhood scale of development to support shared flood control solutions.

The proposed system establishes a neighborhood-scale shared flood control solution through the provision and deliberate design of emergency overflow pathways through the street and common area networks.

4. Encourage incorporation of Light Imprint Best Management Practices (BMPs) at the Block, street, and site scales of development, appropriate to land use context and site conditions.

The proposed stormwater management system incorporates light imprint best management practices through the retention swales, sediment sumps, and hydrodynamic separation spread throughout the development, on a block and street level, to achieve the required water quality goals.

6. REFERENCES

- [1] Territorial Landworks, Inc. now IMEG, "Drainage and Infrastructure Recommendation Memo for Mullan Area Master Plan," Missoula, 2020.
- [2] Newfields, Inc., "Cumulative Effects Groundwater Model Update," Missoula, 2023.
- [3] Montana Department of Environmental Quality, "Circular DEQ-8 Montana Standards for Subdivision Storm Water Drainage," Montana Department of Environmental Quality, Helena, 2017.
- [4] United States Department of Agriculture, "Urban Hydrology for Small Watersheds; TR-55," Natural Resources Conservation Service, Washington, DC, 1986.

APPENDIX A

2-year, 24-hour Event PCSWMM Output Report

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

Element Count

Number of rain gages 3
Number of subcatchments ... 76
Number of nodes 93
Number of links 90
Number of pollutants 0
Number of land uses 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
100yr24hr	100yr24hr	INTENSITY	6 min.
10yr24hr	SCS_Type_II_1.66in	INTENSITY	6 min.
2yr24hr	2yr24hr	INTENSITY	6 min.

Subcatchment Summary

Name Outlet	Area	Width	%Imperv	%Slope	Rain Gage
1 CB9	0.76	95.36	80.00	2.0000	2yr24hr
10 CB33	0.19	46.66	72.00	2.0000	2yr24hr
11 CB5	1.57	196.00	65.00	2.0000	2yr24hr
12 CB1	0.92	160.00	9.00	2.0000	2yr24hr
13 CB1	1.29	190.50	67.00	2.0000	2yr24hr
14 CB14	0.17	50.30	75.00	2.0000	2yr24hr
15 CB15	0.18	53.40	75.00	2.0000	2yr24hr
16 CB13	0.06	38.30	75.00	2.0000	2yr24hr
17 CB16	0.06	38.30	75.00	2.0000	2yr24hr
18 CB11	0.22	60.00	75.00	2.0000	2yr24hr
19 CB12	0.22	60.00	75.00	2.0000	2yr24hr
2 CB4	0.97	127.73	71.00	2.0000	2yr24hr

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

20	0.09	36.60	75.00	2.0000	2yr24hr
CB26					
21	0.09	36.60	75.00	2.0000	2yr24hr
CB27					
22	0.41	65.30	73.00	2.0000	2yr24hr
CB18					
23	0.73	183.60	63.00	2.0000	2yr24hr
OFTrail					
24	1.22	183.00	66.00	2.0000	2yr24hr
CB84					
25	1.65	192.00	69.00	2.0000	2yr24hr
OFTrail					
26	2.77	228.00	59.00	2.0000	2yr24hr
CB999					
27	0.53	77.00	66.00	2.0000	2yr24hr
CB56					
28	0.61	103.00	73.00	2.0000	2yr24hr
CB36					
29	0.31	54.00	72.00	2.0000	2yr24hr
CB35					
3	0.35	124.00	52.00	2.0000	2yr24hr
CB2					
30	0.22	56.00	72.00	2.0000	2yr24hr
CB31					
31	0.67	114.00	43.00	2.0000	2yr24hr
CB19					
32	0.54	103.00	72.00	2.0000	2yr24hr
CB40					
33	0.19	67.00	59.00	2.0000	2yr24hr
CB39					
34	0.18	54.00	61.00	2.0000	2yr24hr
CB38					
35	0.21	57.30	64.00	2.0000	2yr24hr
CB41					
36	0.07	33.00	73.00	2.0000	2yr24hr
CB42					
37	0.33	87.00	73.00	2.0000	2yr24hr
CB46					
38	0.12	37.00	73.00	2.0000	2yr24hr
CB44					
39	0.69	101.00	85.00	2.0000	2yr24hr
CB47					
4	0.25	100.75	72.00	2.0000	2yr24hr
CB3					
40	0.19	53.00	80.00	2.0000	2yr24hr
CB45					
41	0.98	120.00	67.00	2.0000	2yr24hr
CB31					
42	1.81	168.00	49.00	2.0000	2yr24hr
CB19					
43	0.75	142.50	57.00	2.0000	2yr24hr
CB22					
44	0.70	135.00	63.00	2.0000	2yr24hr
CB21					
45	1.27	245.00	76.00	2.0000	2yr24hr
CB23					
46	0.55	100.00	84.00	2.0000	2yr24hr
CB24					
47	0.31	42.00	75.00	2.0000	2yr24hr
CB28					

**Paisley Park Subdivision
2-year, 24-hour PCSWMM Results**

48		0.31	42.00	75.00	2.0000	2yr24hr
CB29		0.18	60.40	75.00	2.0000	2yr24hr
49		0.20	60.22	61.00	2.0000	2yr24hr
CB50		0.18	60.40	75.00	2.0000	2yr24hr
5		0.09	39.30	75.00	2.0000	2yr24hr
CB8		0.09	39.30	75.00	2.0000	2yr24hr
50		0.26	60.80	79.00	2.0000	2yr24hr
CB49		0.19	46.00	75.00	2.0000	2yr24hr
51		0.17	35.30	75.00	2.0000	2yr24hr
CB51		0.10	33.50	75.00	2.0000	2yr24hr
52		1.54	151.00	66.00	2.0000	2yr24hr
CB54		2.24	224.00	44.00	2.0000	2yr24hr
53		0.34	50.50	73.00	2.0000	2yr24hr
CB52		0.25	65.00	57.00	2.0000	2yr24hr
54		0.59	130.00	72.00	2.0000	2yr24hr
CB53		0.39	99.00	68.00	2.0000	2yr24hr
55		0.13	50.20	74.00	2.0000	2yr24hr
CB57		0.20	48.00	81.00	2.0000	2yr24hr
56		0.16	54.70	72.00	2.0000	2yr24hr
CB62		0.09	63.80	53.00	2.0000	2yr24hr
57		0.10	70.30	51.00	2.0000	2yr24hr
CB67		0.17	54.90	83.00	2.0000	2yr24hr
58		0.07	32.00	78.00	2.0000	2yr24hr
CB68		1.20	174.00	82.00	2.0000	2yr24hr
59		0.36	65.00	67.00	2.0000	2yr24hr
CB65		0.10	36.90	80.00	2.0000	2yr24hr
6		0.22	65.10	81.00	2.0000	2yr24hr
CB7		0.54	57.40	88.00	2.0000	2yr24hr
60		0.18	94.40	75.00	2.0000	2yr24hr
CB66		1.78	240.00	84.00	2.0000	2yr24hr
61						
CB69						
62						
CB73						
63						
CB70						
64						
CB75						
65						
CB74						
66						
CB60						
67						
CB76						
68						
CB77						
69						
CB61						
7						
CB10						
70						
CB80						
71						
CB79						
72						
CB82						
73						
CB82						
74						
CB72						

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

75	0.64	150.00	75.00	2.0000	2yr24hr
CB86					
76	0.93	500.00	80.00	2.0000	2yr24hr
CB88					
8	0.43	78.38	62.00	2.0000	2yr24hr
CB6					
9	0.32	79.00	73.00	2.0000	2yr24hr
CB34					

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
<hr/>					
CB1	JUNCTION	3146.59	5.13	50.0	
CB10	JUNCTION	3149.24	3.66	50.0	
CB11	JUNCTION	3147.29	5.92	50.0	
CB12	JUNCTION	3148.24	4.99	50.0	
CB13	JUNCTION	3147.90	5.36	50.0	
CB14	JUNCTION	3148.81	3.73	50.0	
CB15	JUNCTION	3149.25	3.30	50.0	
CB16	JUNCTION	3148.85	4.43	50.0	
CB17	JUNCTION	3146.54	4.96	50.0	
CB18	JUNCTION	3146.61	4.97	50.0	
CB19	JUNCTION	3146.64	5.55	50.0	
CB2	JUNCTION	3147.51	3.97	50.0	
CB20	JUNCTION	3147.72	6.64	50.0	
CB21	JUNCTION	3148.28	4.77	50.0	
CB22	JUNCTION	3148.45	4.63	50.0	
CB23	JUNCTION	3148.86	3.93	50.0	
CB24	JUNCTION	3150.97	3.97	50.0	
CB25	JUNCTION	3148.05	4.65	50.0	
CB26	JUNCTION	3148.83	4.37	50.0	
CB27	JUNCTION	3149.79	3.41	50.0	
CB28	JUNCTION	3148.21	5.05	50.0	
CB29	JUNCTION	3149.16	4.10	50.0	
CB3	JUNCTION	3148.41	3.19	50.0	
CB30	JUNCTION	3147.24	4.32	50.0	
CB31	JUNCTION	3147.69	5.11	50.0	
CB32	JUNCTION	3148.63	4.49	50.0	
CB33	JUNCTION	3149.17	4.39	50.0	
CB34	JUNCTION	3149.68	4.02	50.0	
CB35	JUNCTION	3149.01	4.79	50.0	
CB36	JUNCTION	3149.50	4.47	50.0	
CB37	JUNCTION	3149.50	5.39	50.0	
CB38	JUNCTION	3149.80	5.20	50.0	
CB39	JUNCTION	3150.48	4.68	50.0	
CB4	JUNCTION	3148.28	3.22	50.0	
CB40	JUNCTION	3151.68	2.25	50.0	
CB41	JUNCTION	3151.67	3.36	50.0	
CB42	JUNCTION	3149.63	5.33	50.0	
CB43	JUNCTION	3150.51	3.77	50.0	
CB44	JUNCTION	3150.86	3.91	50.0	
CB45	JUNCTION	3151.25	3.58	50.0	
CB46	JUNCTION	3151.13	3.74	50.0	

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB47	JUNCTION	3151.52	3.53	50.0
CB48	JUNCTION	3148.74	6.03	50.0
CB49	JUNCTION	3149.89	4.81	50.0
CB5	JUNCTION	3147.08	4.16	50.0
CB50	JUNCTION	3148.84	5.89	50.0
CB51	JUNCTION	3149.42	4.24	50.0
CB52	JUNCTION	3149.83	3.83	50.0
CB53	JUNCTION	3150.76	2.91	50.0
CB54	JUNCTION	3150.13	3.49	50.0
CB55	JUNCTION	3147.44	5.15	50.0
CB56	JUNCTION	3147.47	4.78	50.0
CB57	JUNCTION	3147.51	4.82	50.0
CB58	JUNCTION	3147.68	4.88	50.0
CB59	JUNCTION	3147.92	5.62	50.0
CB6	JUNCTION	3147.78	4.92	50.0
CB60	JUNCTION	3148.71	4.04	50.0
CB61	JUNCTION	3149.22	4.09	50.0
CB62	JUNCTION	3148.45	4.41	0.0
CB63	JUNCTION	3148.55	3.47	0.0
CB64	JUNCTION	3148.82	3.46	0.0
CB65	JUNCTION	3148.92	4.08	0.0
CB66	JUNCTION	3149.03	4.00	0.0
CB67	JUNCTION	3148.80	3.43	50.0
CB68	JUNCTION	3148.67	3.59	50.0
CB69	JUNCTION	3148.68	5.36	50.0
CB7	JUNCTION	3147.90	4.86	50.0
CB70	JUNCTION	3149.05	5.11	50.0
CB71	JUNCTION	3149.18	4.99	50.0
CB72	JUNCTION	3149.74	4.13	50.0
CB73	JUNCTION	3150.01	4.28	50.0
CB74	JUNCTION	3149.77	3.18	50.0
CB75	JUNCTION	3149.96	3.11	50.0
CB76	JUNCTION	3149.06	3.94	50.0
CB77	JUNCTION	3149.32	4.27	0.0
CB78	JUNCTION	3150.01	4.40	50.0
CB79	JUNCTION	3150.70	3.80	50.0
CB8	JUNCTION	3148.36	4.58	50.0
CB80	JUNCTION	3149.49	3.81	0.0
CB81	JUNCTION	3149.55	4.48	0.0
CB82	JUNCTION	3149.86	2.95	0.0
CB83	JUNCTION	3149.09	3.62	50.0
CB84	JUNCTION	3149.80	3.06	50.0
CB85	JUNCTION	3149.12	3.13	0.0
CB86	JUNCTION	3149.20	2.88	0.0
CB88	JUNCTION	3150.10	3.00	0.0
CB9	JUNCTION	3148.90	3.65	50.0
CB999	JUNCTION	3147.44	6.00	50.0
OF_North	OUTFALL	3150.50	0.25	0.0
OF_South	OUTFALL	3150.50	0.50	0.0
OFTrail	OUTFALL	0.00	0.00	0.0
CMPNorth	STORAGE	3146.85	5.25	0.0
CMPSouth	STORAGE	3146.00	5.50	0.0

Link Summary

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

Name	From Node	To Node	Type	Length	%
Slope	Roughness				
<hr/>					
C1	CB1	CMPSouth	CONDUIT	20.0	
0.4700	0.0100				
C2	CB999	CMPNorth	CONDUIT	10.0	
0.9100	0.0100				
C3	CB17	CMPSouth	CONDUIT	20.0	
0.2000	0.0100				
C4	CMPSouth	OF_South	CONDUIT	30.2	
1.6574	0.0100				
C5	CB55	CMPNorth	CONDUIT	20.7	
0.4406	0.0100				
C6	CMPNorth	OF_North	CONDUIT	18.8	
7.1875	0.0100				
SP1	CB2	CB1	CONDUIT	279.5	
0.1499	0.0100				
SP10	CB11	CB1	CONDUIT	202.0	
0.2198	0.0100				
SP11	CB12	CB11	CONDUIT	45.6	
1.5489	0.0100				
SP12	CB13	CB11	CONDUIT	120.4	
0.2999	0.0100				
SP13	CB14	CB13	CONDUIT	132.4	
0.5001	0.0100				
SP14	CB15	CB14	CONDUIT	44.3	
1.0001	0.0100				
SP15	CB16	CB13	CONDUIT	45.3	
1.5524	0.0100				
SP16	CB18	CB17	CONDUIT	20.0	
0.3750	0.0100				
SP17	CB19	CB18	CONDUIT	21.3	
0.1078	0.0100				
SP18	CB20	CB19	CONDUIT	359.5	
0.2999	0.0100				
SP19	CB21	CB20	CONDUIT	171.9	
0.1798	0.0100				
SP2	CB3	CB2	CONDUIT	124.6	
0.5218	0.0100				
SP20	CB22	CB21	CONDUIT	34.0	
0.4993	0.0100				
SP21	CB23	CB22	CONDUIT	16.2	
1.0007	0.0100				
SP22	CB24	CB23	CONDUIT	186.6	
0.9992	0.0100				
SP23	CB25	CB18	CONDUIT	199.5	
0.2201	0.0100				
SP24	CB26	CB25	CONDUIT	27.2	
0.9992	0.0100				
SP25	CB27	CB26	CONDUIT	48.4	
1.9989	0.0100				
SP26	CB28	CB25	CONDUIT	15.2	
0.9989	0.0100				
SP27	CB29	CB28	CONDUIT	47.8	
1.9989	0.0100				
SP28	CB30	CB19	CONDUIT	26.6	
0.4015	0.0100				
SP29	CB31	CB30	CONDUIT	110.6	
0.3996	0.0100				

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP3		CB4	CB2	CONDUIT	135.6
0.3835	0.0100	CB32	CB31	CONDUIT	139.3
SP30		CB33	CB32	CONDUIT	29.1
0.4990	0.0100	CB34	CB33	CONDUIT	50.6
SP31		CB35	CB32	CONDUIT	12.8
1.0003	0.0100	CB36	CB35	CONDUIT	49.1
SP32		CB37	CB20	CONDUIT	257.6
0.9990	0.0100	CB38	CB37	CONDUIT	30.3
SP33		CB39	CB38	CONDUIT	42.5
1.0027	0.0100	CB40	CB39	CONDUIT	120.5
SP34		CB41	CB39	CONDUIT	29.9
0.9998	0.0100	CB5	CB1	CONDUIT	108.3
SP35		CB42	CB37	CONDUIT	21.5
0.4997	0.0100	CB43	CB42	CONDUIT	146.1
SP36		CB44	CB43	CONDUIT	9.8
0.9982	0.0100	CB45	CB44	CONDUIT	39.5
SP37		CB46	CB43	CONDUIT	37.1
0.9995	0.0100	CB47	CB46	CONDUIT	39.5
SP38		CB48	CB20	CONDUIT	211.7
0.9992	0.0100	CB49	CB48	CONDUIT	45.1
SP39		CB50	CB48	CONDUIT	24.2
4.0008	0.0100	CB51	CB50	CONDUIT	144.0
SP4		CB6	CB5	CONDUIT	174.0
0.2198	0.0100	CB52	CB51	CONDUIT	40.3
SP40		CB53	CB52	CONDUIT	46.6
0.5986	0.0100	CB54	CB51	CONDUIT	46.4
SP41		CB55	CB55	CONDUIT	24.0
0.5997	0.0100	CB56	CB56	CONDUIT	34.8
SP42		CB57	CB56	CONDUIT	157.6
0.9957	0.0100	CB58	CB57	CONDUIT	214.7
SP43		CB59	CB58	CONDUIT	
0.9985	0.0100				
SP44					
0.9994	0.0100				
SP45					
1.0006	0.0100				
SP46					
0.2499	0.0100				
SP47					
1.9979	0.0100				
SP48					
0.4008	0.0100				
SP49					
0.3999	0.0100				
SP5					
0.3999	0.0100				
SP50					
0.3998	0.0100				
SP51					
1.9990	0.0100				
SP52					
0.9991	0.0100				
SP53					
0.1165	0.0100				
SP54					
0.1094	0.0100				
SP55					
0.1098	0.0100				
SP56					
0.1099	0.0100				

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP57		CB60	CB59	CONDUIT	194.5
0.1502	0.0100	CB61	CB60	CONDUIT	26.0
SP58		CB62	CB57	CONDUIT	35.7
0.9996	0.0100	CB7	CB6	CONDUIT	30.1
SP59		CB63	CB62	CONDUIT	30.8
0.3021	0.0100	CB64	CB63	CONDUIT	67.8
SP6		CB65	CB64	CONDUIT	47.0
0.3988	0.0100	CB66	CB65	CONDUIT	51.0
SP60		CB67	CB58	CONDUIT	60.7
0.2987	0.0100	CB68	CB58	CONDUIT	33.4
SP61		CB69	CB59	CONDUIT	173.6
0.3994	0.0100	CB70	CB69	CONDUIT	41.4
SP62		CB71	CB70	CONDUIT	42.2
0.2192	0.0100	CB72	CB71	CONDUIT	187.5
SP63		CB8	CB7	CONDUIT	41.9
0.2197	0.0100	CB73	CB71	CONDUIT	22.6
SP64		CB74	CB60	CONDUIT	63.3
0.4990	0.0100	CB75	CB74	CONDUIT	37.4
SP65		CB76	CB60	CONDUIT	44.7
0.5003	0.0100	CB77	CB76	CONDUIT	119.5
SP66		CB78	CB77	CONDUIT	11.1
0.1498	0.0100	CB79	CB78	CONDUIT	45.7
SP67		CB80	CB77	CONDUIT	33.3
0.2992	0.0100	CB81	CB80	CONDUIT	26.6
SP68		CB82	CB81	CONDUIT	147.0
0.2988	0.0100	CB9	CB8	CONDUIT	108.4
SP69		CB83	CB55	CONDUIT	23.5
0.2997	0.0100	CB84	CB83	CONDUIT	109.4
SP7		CB85	CB66	CONDUIT	38.9
0.5007	0.0100	CB86	CB85	CONDUIT	35.8
SP70					
1.4973	0.0100				
SP71					
0.4993	0.0100				
SP72					
0.5001	0.0100				
SP73					
0.2191	0.0100				
SP74					
0.2175	0.0100				
SP75					
1.7438	0.0100				
SP76					
1.4999	0.0100				
SP77					
0.5161	0.0100				
SP78					
0.2181	0.0100				
SP79					
0.2163	0.0100				
SP8					
0.5001	0.0100				
SP80					
0.6506	0.0100				
SP81					
0.6500	0.0100				
SP82					
0.2208	0.0100				
SP83					
0.2205	0.0100				

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP85 0.2194	0.0100	CB88	CB82	CONDUIT	108.5
SP9 0.9989	0.0100	CB10	CB8	CONDUIT	38.3

Cross Section Summary

Full Conduit Flow	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels
-----	-----	-----	-----	-----	-----	-----
C1 36.56	CIRCULAR	2.50	4.91	0.62	2.50	1
C2 50.87	CIRCULAR	2.50	4.91	0.62	2.50	1
C3 23.85	CIRCULAR	2.50	4.91	0.62	2.50	1
C4 297.34	RECT_OPEN	0.50	25.00	0.49	50.00	1
C5 35.39	CIRCULAR	2.50	4.91	0.62	2.50	1
C6 196.32	RECT_OPEN	0.25	12.50	0.25	50.00	1
SP1 11.39	CIRCULAR	2.00	3.14	0.50	2.00	1
SP10 13.79	CIRCULAR	2.00	3.14	0.50	2.00	1
SP11 17.00	CIRCULAR	1.50	1.77	0.38	1.50	1
SP12 7.48	CIRCULAR	1.50	1.77	0.38	1.50	1
SP13 3.28	CIRCULAR	1.00	0.79	0.25	1.00	1
SP14 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP15 5.77	CIRCULAR	1.00	0.79	0.25	1.00	1
SP16 32.65	CIRCULAR	2.50	4.91	0.62	2.50	1
SP17 17.51	CIRCULAR	2.50	4.91	0.62	2.50	1
SP18 29.20	CIRCULAR	2.50	4.91	0.62	2.50	1
SP19 12.47	CIRCULAR	2.00	3.14	0.50	2.00	1
SP2 9.86	CIRCULAR	1.50	1.77	0.38	1.50	1
SP20 20.78	CIRCULAR	2.00	3.14	0.50	2.00	1
SP21 13.66	CIRCULAR	1.50	1.77	0.38	1.50	1
SP22 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP23 6.41	CIRCULAR	1.50	1.77	0.38	1.50	1
SP24	CIRCULAR	1.00	0.79	0.25	1.00	1

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP25	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP26	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP27	CIRCULAR	1.50	1.77	0.38	1.50	1
19.31						
SP28	CIRCULAR	2.00	3.14	0.50	2.00	1
18.64						
SP29	CIRCULAR	2.00	3.14	0.50	2.00	1
18.59						
SP3	CIRCULAR	1.50	1.77	0.38	1.50	1
8.46						
SP30	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP31	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP32	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP33	CIRCULAR	1.00	0.79	0.25	1.00	1
4.64						
SP34	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP35	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP36	CIRCULAR	1.50	1.77	0.38	1.50	1
13.64						
SP37	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP38	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP39	CIRCULAR	1.00	0.79	0.25	1.00	1
9.26						
SP4	CIRCULAR	2.00	3.14	0.50	2.00	1
13.79						
SP40	CIRCULAR	1.50	1.77	0.38	1.50	1
10.57						
SP41	CIRCULAR	1.50	1.77	0.38	1.50	1
10.58						
SP42	CIRCULAR	1.00	0.79	0.25	1.00	1
4.62						
SP43	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP44	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP45	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP46	CIRCULAR	1.50	1.77	0.38	1.50	1
6.83						
SP47	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP48	CIRCULAR	1.50	1.77	0.38	1.50	1
8.65						
SP49	CIRCULAR	1.50	1.77	0.38	1.50	1
8.64						
SP5	CIRCULAR	2.00	3.14	0.50	2.00	1
18.60						
SP50	CIRCULAR	1.00	0.79	0.25	1.00	1
2.93						
SP51	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP52	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP53	CIRCULAR	2.50	4.91	0.62	2.50	1
18.20						
SP54	CIRCULAR	2.50	4.91	0.62	2.50	1
17.63						
SP55	CIRCULAR	2.50	4.91	0.62	2.50	1
17.67						
SP56	CIRCULAR	2.50	4.91	0.62	2.50	1
17.68						
SP57	CIRCULAR	2.00	3.14	0.50	2.00	1
11.40						
SP58	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP59	CIRCULAR	1.50	1.77	0.38	1.50	1
7.51						
SP6	CIRCULAR	2.00	3.14	0.50	2.00	1
18.57						
SP60	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP61	CIRCULAR	1.50	1.77	0.38	1.50	1
8.63						
SP62	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP63	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP64	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP65	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP66	CIRCULAR	2.00	3.14	0.50	2.00	1
11.38						
SP67	CIRCULAR	1.50	1.77	0.38	1.50	1
7.47						
SP68	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP69	CIRCULAR	1.50	1.77	0.38	1.50	1
7.48						
SP7	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP70	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP71	CIRCULAR	1.00	0.79	0.25	1.00	1
3.27						
SP72	CIRCULAR	1.00	0.79	0.25	1.00	1
3.28						
SP73	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP74	CIRCULAR	1.50	1.77	0.38	1.50	1
6.37						
SP75	CIRCULAR	1.00	0.79	0.25	1.00	1
6.12						
SP76	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP77	CIRCULAR	1.50	1.77	0.38	1.50	1
9.81						
SP78	CIRCULAR	1.50	1.77	0.38	1.50	1
6.38						
SP79	CIRCULAR	1.50	1.77	0.38	1.50	1
6.35						

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP8	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP80	CIRCULAR	1.00	0.79	0.25	1.00	1
3.74						
SP81	CIRCULAR	1.00	0.79	0.25	1.00	1
3.73						
SP82	CIRCULAR	1.50	1.77	0.38	1.50	1
6.42						
SP83	CIRCULAR	1.50	1.77	0.38	1.50	1
6.41						
SP85	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP9	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff	YES
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	YES
Water Quality	NO
Infiltration Method	HORTON
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	01/27/2025 00:00:00
Ending Date	01/30/2025 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:00:02
Wet Time Step	00:00:30
Dry Time Step	00:05:00
Routing Time Step	2.00 sec
Variable Time Step	NO
Maximum Trials	16
Number of Threads	8
Head Tolerance	0.000500 ft

Runoff Quantity Continuity	Volume acre-feet	Depth inches
-----	-----	-----
Total Precipitation	3.908	1.170
Evaporation Loss	0.000	0.000
Infiltration Loss	1.310	0.392
Surface Runoff	2.543	0.762
Final Storage	0.055	0.016
Continuity Error (%)	-0.003	

Flow Routing Continuity	Volume acre-feet	Volume 10^6 gal
-----	-----	-----

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	2.543	0.829
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.152	0.050
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	2.390	0.779
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.037	

Highest Continuity Errors

Node CB2 (1.14%)

Highest Flow Instability Indexes

All links are stable.

Most Frequent Nonconverging Nodes

Convergence obtained at all time steps.

Routing Time Step Summary

Minimum Time Step	:	2.00 sec
Average Time Step	:	2.00 sec
Maximum Time Step	:	2.00 sec
% of Time in Steady State	:	0.00
Average Iterations per Step	:	2.00
% of Steps Not Converging	:	0.00

Subcatchment Runoff Summary

Perv	Total	Total	Total	Total	Total	Total	Imperv	
		Total	Peak	Runoff		Evap	Infil	Runoff
		Precip		Runon				
Runoff	Runoff	Runoff	Runoff	Coeff				
Subcatchment		in	in	in				
in	in	10^6 gal		CFS				

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

1			1.17	0.00	0.00	0.23	0.92
0.00	0.92	0.02	0.89	0.783			
10			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.00	0.21	0.705			
11			1.17	0.00	0.00	0.41	0.74
0.00	0.74	0.03	1.53	0.636			
12			1.17	0.00	0.00	1.06	0.10
0.00	0.10	0.00	0.13	0.088			
13			1.17	0.00	0.00	0.39	0.77
0.00	0.77	0.03	1.32	0.656			
14			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.21	0.734			
15			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.22	0.734			
16			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.07	0.734			
17			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.07	0.734			
18			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.01	0.26	0.734			
19			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.01	0.26	0.734			
2			1.17	0.00	0.00	0.34	0.81
0.00	0.81	0.02	1.03	0.695			
20			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.10	0.734			
21			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.10	0.734			
22			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.01	0.46	0.715			
23			1.17	0.00	0.00	0.43	0.72
0.00	0.72	0.01	0.72	0.617			
24			1.17	0.00	0.00	0.40	0.76
0.00	0.76	0.03	1.23	0.646			
25			1.17	0.00	0.00	0.36	0.79
0.00	0.79	0.04	1.69	0.675			
26			1.17	0.00	0.00	0.48	0.68
0.00	0.68	0.05	2.36	0.578			
27			1.17	0.00	0.00	0.40	0.76
0.00	0.76	0.01	0.54	0.646			
28			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.01	0.68	0.715			
29			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.01	0.34	0.705			
3			1.17	0.00	0.00	0.56	0.60
0.00	0.60	0.01	0.29	0.509			
30			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.00	0.25	0.705			
31			1.17	0.00	0.00	0.67	0.49
0.00	0.49	0.01	0.45	0.421			
32			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.01	0.61	0.705			
33			1.17	0.00	0.00	0.48	0.68
0.00	0.68	0.00	0.18	0.578			
34			1.17	0.00	0.00	0.46	0.70
0.00	0.70	0.00	0.17	0.597			
35			1.17	0.00	0.00	0.42	0.73
0.00	0.73	0.00	0.21	0.626			
36			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.00	0.09	0.715			

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

37			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.01	0.38	0.715			
38			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.00	0.14	0.715			
39			1.17	0.00	0.00	0.18	0.97
0.00	0.97	0.02	0.87	0.832			
4			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.01	0.29	0.705			
40			1.17	0.00	0.00	0.23	0.92
0.00	0.92	0.00	0.24	0.783			
41			1.17	0.00	0.00	0.39	0.77
0.00	0.77	0.02	0.98	0.656			
42			1.17	0.00	0.00	0.60	0.56
0.00	0.56	0.03	1.33	0.480			
43			1.17	0.00	0.00	0.50	0.65
0.00	0.65	0.01	0.67	0.558			
44			1.17	0.00	0.00	0.43	0.72
0.00	0.72	0.01	0.69	0.617			
45			1.17	0.00	0.00	0.28	0.87
0.00	0.87	0.03	1.48	0.744			
46			1.17	0.00	0.00	0.19	0.96
0.00	0.96	0.01	0.70	0.822			
47			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.01	0.35	0.734			
48			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.01	0.35	0.734			
49			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.21	0.734			
5			1.17	0.00	0.00	0.46	0.70
0.00	0.70	0.00	0.19	0.597			
50			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.21	0.734			
51			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.11	0.734			
52			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.11	0.734			
53			1.17	0.00	0.00	0.25	0.90
0.00	0.90	0.01	0.32	0.773			
54			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.22	0.734			
55			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.20	0.734			
56			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.12	0.734			
57			1.17	0.00	0.00	0.40	0.76
0.00	0.76	0.03	1.47	0.646			
58			1.17	0.00	0.00	0.66	0.50
0.00	0.50	0.03	1.51	0.431			
59			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.01	0.37	0.715			
6			1.17	0.00	0.00	0.50	0.65
0.00	0.65	0.00	0.23	0.558			
60			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.01	0.67	0.705			
61			1.17	0.00	0.00	0.37	0.78
0.00	0.78	0.01	0.42	0.666			
62			1.17	0.00	0.00	0.30	0.85
0.00	0.85	0.00	0.15	0.724			
63			1.17	0.00	0.00	0.22	0.93
0.00	0.93	0.00	0.25	0.793			

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

64			1.17	0.00	0.00	0.33	0.82
0.00	0.82	0.00	0.18	0.705			
65			1.17	0.00	0.00	0.55	0.61
0.00	0.61	0.00	0.08	0.519			
66			1.17	0.00	0.00	0.57	0.58
0.00	0.58	0.00	0.09	0.499			
67			1.17	0.00	0.00	0.20	0.95
0.00	0.95	0.00	0.22	0.812			
68			1.17	0.00	0.00	0.26	0.89
0.00	0.89	0.00	0.08	0.764			
69			1.17	0.00	0.00	0.21	0.94
0.00	0.94	0.03	1.46	0.803			
7			1.17	0.00	0.00	0.39	0.77
0.00	0.77	0.01	0.38	0.656			
70			1.17	0.00	0.00	0.23	0.92
0.00	0.92	0.00	0.13	0.783			
71			1.17	0.00	0.00	0.22	0.93
0.00	0.93	0.01	0.28	0.793			
72			1.17	0.00	0.00	0.14	1.01
0.00	1.01	0.01	0.67	0.861			
73			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.00	0.22	0.734			
74			1.17	0.00	0.00	0.19	0.96
0.00	0.96	0.05	2.20	0.822			
75			1.17	0.00	0.00	0.29	0.86
0.00	0.86	0.01	0.75	0.734			
76			1.17	0.00	0.00	0.23	0.92
0.00	0.92	0.02	1.20	0.783			
8			1.17	0.00	0.00	0.44	0.71
0.00	0.71	0.01	0.41	0.607			
9			1.17	0.00	0.00	0.32	0.84
0.00	0.84	0.01	0.36	0.715			

Node Depth Summary

Node	Type	Average Depth	Maximum Depth	Maximum HGL	Time of Max Occurrence	Reported Max Depth
		Feet	Feet	Feet	days hr:min	Feet
CB1	JUNCTION	0.09	1.22	3147.82	0 12:33	1.22
CB10	JUNCTION	0.01	0.20	3149.44	0 11:54	0.20
CB11	JUNCTION	0.03	0.53	3147.82	0 12:33	0.53
CB12	JUNCTION	0.01	0.13	3148.37	0 11:52	0.13
CB13	JUNCTION	0.02	0.29	3148.19	0 11:54	0.29
CB14	JUNCTION	0.01	0.25	3149.06	0 11:54	0.25
CB15	JUNCTION	0.01	0.15	3149.40	0 11:54	0.15
CB16	JUNCTION	0.01	0.08	3148.93	0 11:54	0.08
CB17	JUNCTION	0.11	1.52	3148.06	0 11:55	1.52
CB18	JUNCTION	0.10	1.60	3148.22	0 11:55	1.60
CB19	JUNCTION	0.11	1.74	3148.38	0 11:55	1.74
CB2	JUNCTION	0.03	0.53	3148.04	0 11:54	0.53
CB20	JUNCTION	0.04	1.00	3148.71	0 11:55	1.00
CB21	JUNCTION	0.04	0.79	3149.07	0 11:54	0.79
CB22	JUNCTION	0.03	0.75	3149.20	0 11:54	0.75

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB23	JUNCTION	0.02	0.51	3149.37	0	11:54	0.51
CB24	JUNCTION	0.01	0.27	3151.24	0	11:54	0.27
CB25	JUNCTION	0.02	0.39	3148.44	0	11:53	0.39
CB26	JUNCTION	0.01	0.16	3148.99	0	11:54	0.16
CB27	JUNCTION	0.00	0.09	3149.88	0	11:54	0.09
CB28	JUNCTION	0.01	0.34	3148.54	0	11:54	0.34
CB29	JUNCTION	0.01	0.14	3149.30	0	11:54	0.14
CB3	JUNCTION	0.01	0.18	3148.59	0	11:54	0.18
CB30	JUNCTION	0.04	1.15	3148.40	0	11:55	1.15
CB31	JUNCTION	0.03	0.77	3148.46	0	11:55	0.77
CB32	JUNCTION	0.02	0.45	3149.08	0	11:54	0.45
CB33	JUNCTION	0.01	0.28	3149.45	0	11:54	0.28
CB34	JUNCTION	0.01	0.19	3149.87	0	11:54	0.19
CB35	JUNCTION	0.02	0.42	3149.43	0	11:54	0.42
CB36	JUNCTION	0.01	0.28	3149.78	0	11:54	0.28
CB37	JUNCTION	0.03	0.59	3150.10	0	11:54	0.59
CB38	JUNCTION	0.02	0.42	3150.22	0	11:54	0.42
CB39	JUNCTION	0.02	0.37	3150.85	0	11:54	0.37
CB4	JUNCTION	0.02	0.36	3148.65	0	11:54	0.36
CB40	JUNCTION	0.01	0.24	3151.93	0	11:54	0.24
CB41	JUNCTION	0.01	0.10	3151.78	0	11:54	0.10
CB42	JUNCTION	0.02	0.55	3150.18	0	11:54	0.55
CB43	JUNCTION	0.02	0.42	3150.93	0	11:54	0.42
CB44	JUNCTION	0.01	0.24	3151.10	0	11:54	0.24
CB45	JUNCTION	0.01	0.16	3151.41	0	11:54	0.16
CB46	JUNCTION	0.02	0.43	3151.55	0	11:54	0.43
CB47	JUNCTION	0.02	0.33	3151.85	0	11:54	0.33
CB48	JUNCTION	0.02	0.44	3149.19	0	11:54	0.44
CB49	JUNCTION	0.01	0.12	3150.02	0	11:54	0.12
CB5	JUNCTION	0.06	0.77	3147.85	0	11:54	0.77
CB50	JUNCTION	0.02	0.42	3149.26	0	11:54	0.42
CB51	JUNCTION	0.02	0.30	3149.72	0	11:54	0.30
CB52	JUNCTION	0.02	0.33	3150.16	0	11:54	0.33
CB53	JUNCTION	0.01	0.13	3150.89	0	11:54	0.13
CB54	JUNCTION	0.01	0.11	3150.24	0	11:54	0.11
CB55	JUNCTION	0.12	1.40	3148.84	0	11:56	1.40
CB56	JUNCTION	0.12	1.50	3148.97	0	11:56	1.50
CB57	JUNCTION	0.12	1.66	3149.17	0	11:56	1.66
CB58	JUNCTION	0.11	1.68	3149.36	0	11:56	1.68
CB59	JUNCTION	0.08	1.57	3149.48	0	11:56	1.57
CB6	JUNCTION	0.02	0.46	3148.24	0	11:54	0.46
CB60	JUNCTION	0.05	1.01	3149.72	0	11:55	1.01
CB61	JUNCTION	0.02	0.54	3149.75	0	11:55	0.54
CB62	JUNCTION	0.03	0.75	3149.20	0	11:56	0.75
CB63	JUNCTION	0.03	0.72	3149.27	0	11:55	0.72
CB64	JUNCTION	0.02	0.57	3149.39	0	11:54	0.57
CB65	JUNCTION	0.03	0.59	3149.51	0	11:54	0.59
CB66	JUNCTION	0.03	0.56	3149.60	0	11:54	0.56
CB67	JUNCTION	0.02	0.59	3149.40	0	11:56	0.59
CB68	JUNCTION	0.02	0.71	3149.38	0	11:56	0.71
CB69	JUNCTION	0.04	0.89	3149.56	0	11:55	0.89
CB7	JUNCTION	0.02	0.50	3148.40	0	11:54	0.50
CB70	JUNCTION	0.03	0.72	3149.77	0	11:55	0.72
CB71	JUNCTION	0.03	0.74	3149.92	0	11:54	0.74
CB72	JUNCTION	0.03	0.58	3150.32	0	11:54	0.58
CB73	JUNCTION	0.01	0.11	3150.13	0	11:54	0.11
CB74	JUNCTION	0.01	0.20	3149.97	0	11:53	0.20

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB75	JUNCTION	0.01	0.17	3150.13	0	11:54	0.17
CB76	JUNCTION	0.04	0.78	3149.83	0	11:55	0.78
CB77	JUNCTION	0.03	0.74	3150.06	0	11:54	0.74
CB78	JUNCTION	0.01	0.18	3150.19	0	11:54	0.18
CB79	JUNCTION	0.01	0.15	3150.85	0	11:54	0.15
CB8	JUNCTION	0.02	0.46	3148.82	0	11:54	0.46
CB80	JUNCTION	0.03	0.68	3150.17	0	11:54	0.68
CB81	JUNCTION	0.03	0.70	3150.25	0	11:54	0.70
CB82	JUNCTION	0.03	0.67	3150.54	0	11:54	0.67
CB83	JUNCTION	0.02	0.48	3149.58	0	11:54	0.48
CB84	JUNCTION	0.02	0.41	3150.22	0	11:54	0.41
CB85	JUNCTION	0.02	0.50	3149.62	0	11:54	0.50
CB86	JUNCTION	0.02	0.46	3149.66	0	11:54	0.46
CB88	JUNCTION	0.02	0.55	3150.65	0	11:54	0.55
CB9	JUNCTION	0.02	0.31	3149.21	0	11:54	0.31
CB999	JUNCTION	0.09	1.39	3148.83	0	12:37	1.39
OF_North	OUTFALL	0.00	0.00	3150.50	0	00:00	0.00
OF_South	OUTFALL	0.00	0.00	3150.50	0	00:00	0.00
OFTrail	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
CMPNorth	STORAGE	0.14	1.98	3148.83	0	12:37	1.98
CMPSouth	STORAGE	0.12	1.82	3147.82	0	12:33	1.82

Node Inflow Summary

Total Inflow Volume Node gal	Flow Balance Error Percent	Type	Maximum Lateral	Maximum Total	Time of Max	Lateral
			Inflow	Inflow	Occurrence	Inflow Volume
CFS	CFS	days	hr:min	10^6 gal	10^6	
CB1 0.157	-0.320	JUNCTION	1.45	7.54	0 11:54	0.0294
CB10 0.0076	0.002	JUNCTION	0.38	0.38	0 11:54	0.0076
CB11 0.0211	-0.103	JUNCTION	0.26	1.07	0 11:54	0.00508
CB12 0.00508	0.202	JUNCTION	0.26	0.26	0 11:54	0.00508
CB13 0.011	0.278	JUNCTION	0.07	0.56	0 11:54	0.00131
CB14 0.00836	-0.001	JUNCTION	0.21	0.43	0 11:54	0.00407
CB15 0.00429	-0.002	JUNCTION	0.22	0.22	0 11:54	0.00429
CB16 0.00131	0.011	JUNCTION	0.07	0.07	0 11:54	0.00131
CB17 0.274	0.067	JUNCTION	0.00	12.52	0 11:55	0
CB18 0.274	-0.052	JUNCTION	0.46	12.53	0 11:55	0.0094

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB19		JUNCTION	1.78	11.38	0	11:55	0.0364
0.246	0.034						
CB2		JUNCTION	0.29	1.59	0	11:54	0.00569
0.0326	1.158						
CB20		JUNCTION	0.00	7.45	0	11:54	0
0.152	-0.185						
CB21		JUNCTION	0.69	3.53	0	11:54	0.0137
0.0713	0.365						
CB22		JUNCTION	0.67	2.85	0	11:54	0.0133
0.0576	-0.000						
CB23		JUNCTION	1.48	2.18	0	11:54	0.0299
0.0443	0.002						
CB24		JUNCTION	0.70	0.70	0	11:54	0.0144
0.0144	-0.000						
CB25		JUNCTION	0.00	0.90	0	11:54	0
0.0186	0.931						
CB26		JUNCTION	0.10	0.21	0	11:54	0.002
0.004	0.004						
CB27		JUNCTION	0.10	0.10	0	11:54	0.002
0.002	-0.000						
CB28		JUNCTION	0.35	0.70	0	11:54	0.00729
0.0146	-0.000						
CB29		JUNCTION	0.35	0.35	0	11:54	0.00729
0.00729	0.002						
CB3		JUNCTION	0.29	0.29	0	11:54	0.00554
0.00554	0.293						
CB30		JUNCTION	0.00	2.66	0	11:54	0
0.0572	0.079						
CB31		JUNCTION	1.22	2.80	0	11:54	0.0252
0.0571	-0.125						
CB32		JUNCTION	0.00	1.59	0	11:54	0
0.032	0.230						
CB33		JUNCTION	0.21	0.58	0	11:54	0.0042
0.0114	0.000						
CB34		JUNCTION	0.36	0.36	0	11:54	0.00718
0.00718	0.002						
CB35		JUNCTION	0.34	1.02	0	11:54	0.00684
0.0206	0.000						
CB36		JUNCTION	0.68	0.68	0	11:54	0.0138
0.0138	0.001						
CB37		JUNCTION	0.00	2.85	0	11:54	0
0.0581	-0.001						
CB38		JUNCTION	0.17	1.17	0	11:54	0.00336
0.0233	-0.003						
CB39		JUNCTION	0.18	1.00	0	11:54	0.00356
0.0199	0.001						
CB4		JUNCTION	1.03	1.03	0	11:54	0.0214
0.0214	-0.002						
CB40		JUNCTION	0.61	0.61	0	11:54	0.0122
0.0122	0.000						
CB41		JUNCTION	0.21	0.21	0	11:54	0.00416
0.00416	0.000						
CB42		JUNCTION	0.09	1.70	0	11:54	0.00166
0.0349	0.005						
CB43		JUNCTION	0.00	1.62	0	11:54	0
0.0332	-0.006						
CB44		JUNCTION	0.14	0.38	0	11:54	0.00273
0.00749	0.001						
CB45		JUNCTION	0.24	0.24	0	11:54	0.00476
0.00476	0.002						

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB46		JUNCTION	0.38	1.25	0	11:54	0.00744
0.0257	0.000	JUNCTION	0.87	0.87	0	11:54	0.0183
CB47		JUNCTION	0.00	1.17	0	11:54	0
0.0183	0.000	JUNCTION	0.21	0.21	0	11:54	0.00414
CB48		JUNCTION	1.53	3.58	0	11:54	0.0317
0.0234	0.149	JUNCTION	0.21	0.97	0	11:54	0.00414
CB49		JUNCTION	0.11	0.76	0	11:54	0.00214
0.00414	0.112	JUNCTION	0.32	0.54	0	11:54	0.00641
CB5		JUNCTION	0.22	0.22	0	11:54	0.00443
0.0745	0.319	JUNCTION	0.11	0.11	0	11:54	0.00214
CB50		JUNCTION	0.00	12.81	0	11:56	0
0.0193	-0.000	JUNCTION	0.00	9.54	0	11:55	0
CB51		JUNCTION	0.00	7.10	0	11:54	0
0.0151	-0.000	JUNCTION	0.41	2.07	0	11:54	0.00822
CB52		JUNCTION	0.09	4.42	0	11:54	0.00164
0.0108	0.001	JUNCTION	1.46	1.46	0	11:54	0.0305
CB53		JUNCTION	0.12	1.80	0	11:54	0.00233
0.00443	-0.000	JUNCTION	0.00	1.73	0	11:54	0
CB54		JUNCTION	0.00	1.75	0	11:54	0
0.00214	0.007	JUNCTION	0.37	1.76	0	11:54	0.00764
CB55		JUNCTION	0.67	1.40	0	11:54	0.0132
0.296	0.065	JUNCTION	1.47	1.47	0	11:54	0.0315
CB56		JUNCTION	1.51	1.51	0	11:54	0.0307
0.271	0.000	JUNCTION	0.42	2.91	0	11:54	0.00817
CB57		JUNCTION	0.23	1.67	0	11:54	0.0045
0.26	-0.012	JUNCTION	0.25	2.53	0	11:54	0.00499
CB58		JUNCTION	0.00	2.33	0	11:54	0
0.218	-0.033	JUNCTION	2.20	2.20	0	11:54	0.0464
CB59		JUNCTION	0.00	0.00	0	11:54	0
0.155	-0.534	JUNCTION	0.00	0.00	0	11:54	0
CB6		JUNCTION	0.00	0.00	0	11:54	0
0.0429	-0.065	JUNCTION	0.00	0.00	0	11:54	0
CB60		JUNCTION	0.00	0.00	0	11:54	0
0.0933	0.587	JUNCTION	0.00	0.00	0	11:54	0
CB61		JUNCTION	0.00	0.00	0	11:54	0
0.0305	0.002	JUNCTION	0.00	0.00	0	11:54	0
CB62		JUNCTION	0.00	0.00	0	11:54	0
0.0381	0.147	JUNCTION	0.00	0.00	0	11:54	0
CB63		JUNCTION	0.00	0.00	0	11:54	0
0.0358	0.005	JUNCTION	0.00	0.00	0	11:54	0
CB64		JUNCTION	0.00	0.00	0	11:54	0
0.0358	-0.009	JUNCTION	0.00	0.00	0	11:54	0
CB65		JUNCTION	0.00	0.00	0	11:54	0
0.0358	-0.000	JUNCTION	0.00	0.00	0	11:54	0
CB66		JUNCTION	0.00	0.00	0	11:54	0
0.0281	-0.001	JUNCTION	0.00	0.00	0	11:54	0
CB67		JUNCTION	0.00	0.00	0	11:54	0
0.0315	0.141	JUNCTION	0.00	0.00	0	11:54	0
CB68		JUNCTION	0.00	0.00	0	11:54	0
0.0307	0.090	JUNCTION	0.00	0.00	0	11:54	0
CB69		JUNCTION	0.00	0.00	0	11:54	0
0.0626	0.406	JUNCTION	0.00	0.00	0	11:54	0
CB7		JUNCTION	0.00	0.00	0	11:54	0
0.0346	0.000	JUNCTION	0.00	0.00	0	11:54	0
CB70		JUNCTION	0.00	0.00	0	11:54	0
0.0544	0.036	JUNCTION	0.00	0.00	0	11:54	0
CB71		JUNCTION	0.00	0.00	0	11:54	0
0.0494	-0.005	JUNCTION	0.00	0.00	0	11:54	0
CB72		JUNCTION	0.00	0.00	0	11:54	0
0.0464	0.000	JUNCTION	0.00	0.00	0	11:54	0

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

CB73		JUNCTION	0.15	0.15	0	11:54	0.003
0.003	0.015						
CB74		JUNCTION	0.08	0.26	0	11:54	0.00154
0.00515	0.114						
CB75		JUNCTION	0.18	0.18	0	11:54	0.0036
0.0036	0.003						
CB76		JUNCTION	0.22	2.69	0	11:54	0.00436
0.0561	0.021						
CB77		JUNCTION	0.08	2.50	0	11:54	0.00162
0.0517	-0.004						
CB78		JUNCTION	0.00	0.28	0	11:54	0
0.00546	0.025						
CB79		JUNCTION	0.28	0.28	0	11:54	0.00546
0.00546	0.000						
CB8		JUNCTION	0.19	1.45	0	11:54	0.00375
0.0301	-0.001						
CB80		JUNCTION	0.13	2.16	0	11:54	0.00246
0.0447	0.000						
CB81		JUNCTION	0.00	2.06	0	11:54	0
0.0422	0.007						
CB82		JUNCTION	0.89	2.08	0	11:54	0.019
0.0422	0.002						
CB83		JUNCTION	0.00	1.23	0	11:54	0
0.025	-0.003						
CB84		JUNCTION	1.23	1.23	0	11:54	0.025
0.025	0.002						
CB85		JUNCTION	0.00	0.75	0	11:54	0
0.0149	0.001						
CB86		JUNCTION	0.75	0.75	0	11:54	0.0149
0.0149	-0.001						
CB88		JUNCTION	1.20	1.20	0	11:54	0.0231
0.0231	-0.016						
CB9		JUNCTION	0.89	0.89	0	11:54	0.0188
0.0188	0.001						
CB999		JUNCTION	2.36	2.36	0	11:54	0.0508
0.0508	0.009						
OF_North		OUTFALL	0.00	0.00	0	00:00	0
0	0.000 gal						
OF_South		OUTFALL	0.00	0.00	0	00:00	0
0	0.000 gal						
OFTrail		OUTFALL	2.41	2.41	0	11:54	0.0497
0.0497	0.000						
CMPNorth		STORAGE	0.00	14.89	0	11:56	0
0.347	-0.045						
CMPSouth		STORAGE	0.00	19.90	0	11:55	0
0.432	-0.053						

Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

No nodes were flooded.

Storage Volume Summary

Max Occurrence	Storage Unit	Outflow	Average	Avg	Evap	Exfil	Maximum	Max	Time of
			Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
			1000 ft ³	Full	Loss	Loss	1000 ft ³	Full	days
hr:min		CFS							
12:37	CMPNorth	1.29	1.105	2.8	0.0	100.0	17.471	44.6	0
12:33	CMPSouth	1.75	1.218	2.2	0.0	100.1	21.236	37.8	0

Outfall Loading Summary

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10 ⁶ gal
OF_North	0.00	0.00	0.00	0.000
OF_South	0.00	0.00	0.00	0.000
OFTail	35.55	0.07	2.41	0.050
System	11.85	0.07	2.41	0.050

Link Flow Summary

Link	Type	Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
		CFS	days hr:min	ft/sec	Flow	Depth
C1	CONDUIT	7.46	0 11:55	4.72	0.20	0.51
C2	CONDUIT	2.35	0 11:54	4.41	0.05	0.58
C3	CONDUIT	12.52	0 11:55	4.62	0.52	0.54
C4	CONDUIT	0.00	0 00:00	0.00	0.00	0.00
C5	CONDUIT	12.81	0 11:56	5.38	0.36	0.58
C6	CONDUIT	0.00	0 00:00	0.00	0.00	0.00
SP1	CONDUIT	1.58	0 11:54	2.42	0.14	0.26
SP10	CONDUIT	1.04	0 11:54	1.58	0.08	0.38
SP11	CONDUIT	0.26	0 11:54	3.38	0.02	0.11
SP12	CONDUIT	0.55	0 11:54	2.39	0.07	0.19

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP13	CONDUIT	0.42	0	11:54	2.78	0.13	0.25
SP14	CONDUIT	0.22	0	11:54	1.94	0.05	0.20
SP15	CONDUIT	0.07	0	11:54	2.45	0.01	0.08
SP16	CONDUIT	12.52	0	11:55	3.89	0.38	0.62
SP17	CONDUIT	11.29	0	11:55	3.24	0.64	0.67
SP18	CONDUIT	7.25	0	11:55	2.64	0.25	0.55
SP19	CONDUIT	3.48	0	11:54	3.35	0.28	0.38
SP2	CONDUIT	0.28	0	11:54	2.22	0.03	0.15
SP20	CONDUIT	2.84	0	11:54	2.58	0.14	0.39
SP21	CONDUIT	2.18	0	11:54	4.55	0.16	0.34
SP22	CONDUIT	0.70	0	11:54	4.19	0.15	0.26
SP23	CONDUIT	0.91	0	11:54	2.35	0.14	0.32
SP24	CONDUIT	0.21	0	11:54	2.75	0.04	0.15
SP25	CONDUIT	0.10	0	11:54	1.85	0.02	0.12
SP26	CONDUIT	0.70	0	11:54	2.13	0.05	0.24
SP27	CONDUIT	0.35	0	11:54	1.94	0.02	0.16
SP28	CONDUIT	2.58	0	11:55	2.67	0.14	0.60
SP29	CONDUIT	2.66	0	11:54	2.64	0.14	0.48
SP3	CONDUIT	1.02	0	11:54	3.17	0.12	0.24
SP30	CONDUIT	1.59	0	11:54	3.71	0.16	0.32
SP31	CONDUIT	0.57	0	11:54	3.58	0.12	0.26
SP32	CONDUIT	0.36	0	11:54	2.59	0.08	0.23
SP33	CONDUIT	1.01	0	11:54	3.89	0.22	0.37
SP34	CONDUIT	0.68	0	11:54	2.83	0.15	0.35
SP35	CONDUIT	2.82	0	11:54	4.54	0.29	0.38
SP36	CONDUIT	1.16	0	11:54	2.33	0.09	0.34
SP37	CONDUIT	0.99	0	11:54	4.21	0.21	0.34
SP38	CONDUIT	0.60	0	11:54	2.97	0.13	0.31
SP39	CONDUIT	0.21	0	11:54	1.52	0.02	0.24
SP4	CONDUIT	3.55	0	11:54	3.21	0.26	0.43
SP40	CONDUIT	1.69	0	11:54	2.74	0.16	0.38
SP41	CONDUIT	1.62	0	11:54	3.27	0.15	0.32
SP42	CONDUIT	0.38	0	11:54	2.99	0.08	0.22
SP43	CONDUIT	0.24	0	11:54	2.15	0.05	0.20
SP44	CONDUIT	1.24	0	11:54	4.39	0.27	0.39
SP45	CONDUIT	0.87	0	11:54	3.22	0.19	0.38
SP46	CONDUIT	1.18	0	11:54	2.72	0.17	0.31
SP47	CONDUIT	0.21	0	11:54	3.58	0.03	0.16
SP48	CONDUIT	0.97	0	11:54	2.32	0.11	0.29
SP49	CONDUIT	0.76	0	11:54	2.32	0.09	0.24
SP5	CONDUIT	2.07	0	11:54	2.53	0.11	0.31
SP50	CONDUIT	0.54	0	11:54	2.62	0.19	0.31
SP51	CONDUIT	0.22	0	11:54	1.66	0.03	0.23
SP52	CONDUIT	0.11	0	11:54	2.42	0.02	0.11
SP53	CONDUIT	11.77	0	11:56	3.98	0.65	0.58
SP54	CONDUIT	11.32	0	11:56	3.47	0.64	0.63
SP55	CONDUIT	9.54	0	11:56	2.75	0.54	0.67
SP56	CONDUIT	6.94	0	11:56	2.06	0.39	0.65
SP57	CONDUIT	4.30	0	11:54	3.08	0.38	0.52
SP58	CONDUIT	1.45	0	11:54	3.21	0.11	0.43
SP59	CONDUIT	1.78	0	11:55	2.98	0.24	0.52
SP6	CONDUIT	1.67	0	11:54	2.85	0.09	0.24
SP60	CONDUIT	1.69	0	11:54	2.52	0.23	0.49
SP61	CONDUIT	1.73	0	11:54	2.68	0.20	0.43
SP62	CONDUIT	1.75	0	11:54	2.87	0.27	0.39
SP63	CONDUIT	1.40	0	11:54	2.25	0.22	0.38
SP64	CONDUIT	1.44	0	11:54	3.15	0.15	0.48

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP65	CONDUIT	1.48	0	11:54	3.22	0.15	0.52
SP66	CONDUIT	2.81	0	11:54	2.56	0.25	0.49
SP67	CONDUIT	2.52	0	11:54	3.40	0.34	0.45
SP68	CONDUIT	2.30	0	11:54	2.71	0.31	0.49
SP69	CONDUIT	2.18	0	11:54	2.92	0.29	0.44
SP7	CONDUIT	1.44	0	11:54	3.51	0.15	0.28
SP70	CONDUIT	0.15	0	11:54	2.92	0.03	0.18
SP71	CONDUIT	0.27	0	11:54	2.43	0.08	0.22
SP72	CONDUIT	0.18	0	11:54	1.87	0.06	0.18
SP73	CONDUIT	2.68	0	11:55	3.10	0.42	0.51
SP74	CONDUIT	2.49	0	11:54	2.81	0.39	0.51
SP75	CONDUIT	0.28	0	11:54	3.41	0.05	0.21
SP76	CONDUIT	0.28	0	11:54	3.32	0.05	0.17
SP77	CONDUIT	2.16	0	11:54	2.62	0.22	0.47
SP78	CONDUIT	2.05	0	11:54	2.58	0.32	0.46
SP79	CONDUIT	2.06	0	11:54	2.62	0.32	0.46
SP8	CONDUIT	0.88	0	11:54	2.49	0.09	0.25
SP80	CONDUIT	1.22	0	11:54	3.69	0.33	0.44
SP81	CONDUIT	1.23	0	11:54	3.61	0.33	0.45
SP82	CONDUIT	0.75	0	11:54	1.33	0.12	0.36
SP83	CONDUIT	0.75	0	11:54	1.55	0.12	0.32
SP85	CONDUIT	1.19	0	11:54	1.85	0.19	0.41
SP9	CONDUIT	0.38	0	11:54	3.43	0.08	0.20

Flow Classification Summary

Inlet Conduit Ctrl	Length	Adjusted		Fraction of Time in Flow Class						
		/Actual		Up	Down	Sub	Sup	Up	Down	Norm
		Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	
C1 0.00	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.92	0.00
C2 0.00	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.91	0.00
C3 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.92	0.00
C4 0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C5 0.00	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.91	0.00
C6 0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SP1 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.94	0.03
SP10 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.93	0.02
SP11 0.00	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.97	0.03
SP12 0.00	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.97	0.03

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP13 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP14 0.00	1.00	0.00	0.06	0.00	0.94	0.00	0.00	0.00	1.00	1.00
SP15 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP16 0.00	1.00	0.00	0.08	0.00	0.92	0.00	0.00	0.00	0.00	0.67
SP17 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
SP18 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	1.00	1.00
SP19 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP2 0.00	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.99	0.01
SP20 0.00	1.00	0.00	0.19	0.00	0.81	0.00	0.00	0.00	0.00	0.95
SP21 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP22 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP23 0.00	1.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.97	0.02
SP24 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP25 0.00	1.00	0.00	0.00	0.00	0.95	0.05	0.00	0.00	0.00	1.00
SP26 0.00	1.00	0.00	0.12	0.00	0.88	0.00	0.00	0.00	0.00	0.97
SP27 0.00	1.00	0.00	0.00	0.00	0.78	0.22	0.00	0.00	0.00	0.43
SP28 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.95	0.00
SP29 0.00	1.00	0.00	0.04	0.00	0.95	0.01	0.00	0.00	0.00	0.85
SP3 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP30 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP31 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP32 0.00	1.00	0.00	0.00	0.00	0.80	0.20	0.00	0.00	0.00	1.00
SP33 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP34 0.00	1.00	0.00	0.00	0.00	0.70	0.29	0.00	0.00	0.00	0.99
SP35 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP36 0.00	1.00	0.00	0.16	0.00	0.84	0.00	0.00	0.00	0.00	0.99
SP37 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP38 0.00	1.00	0.00	0.00	0.00	0.71	0.29	0.00	0.00	0.00	1.00
SP39 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
SP4 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.93	0.01

Paisley Park Subdivision 2-year, 24-hour PCSWMM Results

SP40 0.00	1.00	0.00	0.10	0.00	0.90	0.00	0.00	0.00	0.94
SP41 0.00	1.00	0.00	0.00	0.00	0.70	0.30	0.00	0.00	0.13
SP42 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP43 0.00	1.00	0.00	0.00	0.00	0.92	0.08	0.00	0.00	1.00
SP44 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP45 0.00	1.00	0.00	0.00	0.00	0.70	0.30	0.00	0.00	0.99
SP46 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP47 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP48 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.96
SP49 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.40
SP5 0.00	1.00	0.00	0.28	0.00	0.72	0.00	0.00	0.00	1.00
SP50 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP51 0.00	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	1.00
SP52 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP53 0.00	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.56
SP54 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.20
SP55 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.85
SP56 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.61
SP57 0.00	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.03
SP58 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00
SP59 0.00	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.00
SP6 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.17
SP60 0.00	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.70
SP61 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43
SP62 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.55
SP63 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.42
SP64 0.00	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.96	0.03
SP65 0.00	1.00	0.00	0.00	0.00	0.03	0.00	0.00	0.96	0.01
SP66 0.00	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.02
SP67 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00

Paisley Park Subdivision
2-year, 24-hour PCSWMM Results

SP68 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.00	0.71
SP69 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.50
SP7 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP70 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP71 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP72 0.00	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.00	0.99
SP73 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP74 0.00	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.00	0.95
SP75 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP76 0.00	1.00	0.00	0.00	0.00	0.66	0.34	0.00	0.00	0.00	0.84
SP77 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.45
SP78 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.51
SP79 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.32
SP8 0.00	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.00	1.00
SP80 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP81 0.00	1.00	0.00	0.00	0.00	0.70	0.30	0.00	0.00	0.00	0.99
SP82 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.97
SP83 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.10
SP85 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.99
SP9 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00

Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Wed May 28 10:42:28 2025

Analysis ended on: Wed May 28 10:42:47 2025

Total elapsed time: 00:00:19

APPENDIX B

10-year, 24-hour Event PCSWMM Output Report

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

Element Count

Number of rain gages 3
Number of subcatchments ... 76
Number of nodes 93
Number of links 90
Number of pollutants 0
Number of land uses 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
100yr24hr	100yr24hr	INTENSITY	6 min.
10yr24hr	SCS_Type_II_1.66in	INTENSITY	6 min.
2yr24hr	2yr24hr	INTENSITY	6 min.

Subcatchment Summary

Name Outlet	Area	Width	%Imperv	%Slope	Rain Gage
1 CB9	0.76	95.36	80.00	2.0000	10yr24hr
10 CB33	0.19	46.66	72.00	2.0000	10yr24hr
11 CB5	1.57	196.00	65.00	2.0000	10yr24hr
12 CB1	0.92	160.00	9.00	2.0000	10yr24hr
13 CB1	1.29	190.50	67.00	2.0000	10yr24hr
14 CB14	0.17	50.30	75.00	2.0000	10yr24hr
15 CB15	0.18	53.40	75.00	2.0000	10yr24hr
16 CB13	0.06	38.30	75.00	2.0000	10yr24hr
17 CB16	0.06	38.30	75.00	2.0000	10yr24hr
18 CB11	0.22	60.00	75.00	2.0000	10yr24hr
19 CB12	0.22	60.00	75.00	2.0000	10yr24hr
2 CB4	0.97	127.73	71.00	2.0000	10yr24hr

**Paisley Park Subdivision
10-year, 24-hour PCSWMM Results**

20	0.09	36.60	75.00	2.0000	10yr24hr
CB26					
21	0.09	36.60	75.00	2.0000	10yr24hr
CB27					
22	0.41	65.30	73.00	2.0000	10yr24hr
CB18					
23	0.73	183.60	63.00	2.0000	10yr24hr
OFTrail					
24	1.22	183.00	66.00	2.0000	10yr24hr
CB84					
25	1.65	192.00	69.00	2.0000	10yr24hr
OFTrail					
26	2.77	228.00	59.00	2.0000	10yr24hr
CB999					
27	0.53	77.00	66.00	2.0000	10yr24hr
CB56					
28	0.61	103.00	73.00	2.0000	10yr24hr
CB36					
29	0.31	54.00	72.00	2.0000	10yr24hr
CB35					
3	0.35	124.00	52.00	2.0000	10yr24hr
CB2					
30	0.22	56.00	72.00	2.0000	10yr24hr
CB31					
31	0.67	114.00	43.00	2.0000	10yr24hr
CB19					
32	0.54	103.00	72.00	2.0000	10yr24hr
CB40					
33	0.19	67.00	59.00	2.0000	10yr24hr
CB39					
34	0.18	54.00	61.00	2.0000	10yr24hr
CB38					
35	0.21	57.30	64.00	2.0000	10yr24hr
CB41					
36	0.07	33.00	73.00	2.0000	10yr24hr
CB42					
37	0.33	87.00	73.00	2.0000	10yr24hr
CB46					
38	0.12	37.00	73.00	2.0000	10yr24hr
CB44					
39	0.69	101.00	85.00	2.0000	10yr24hr
CB47					
4	0.25	100.75	72.00	2.0000	10yr24hr
CB3					
40	0.19	53.00	80.00	2.0000	10yr24hr
CB45					
41	0.98	120.00	67.00	2.0000	10yr24hr
CB31					
42	1.81	168.00	49.00	2.0000	10yr24hr
CB19					
43	0.75	142.50	57.00	2.0000	10yr24hr
CB22					
44	0.70	135.00	63.00	2.0000	10yr24hr
CB21					
45	1.27	245.00	76.00	2.0000	10yr24hr
CB23					
46	0.55	100.00	84.00	2.0000	10yr24hr
CB24					
47	0.31	42.00	75.00	2.0000	10yr24hr
CB28					

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

48	0.31	42.00	75.00	2.0000	10yr24hr
CB29					
49	0.18	60.40	75.00	2.0000	10yr24hr
CB50					
5	0.20	60.22	61.00	2.0000	10yr24hr
CB8					
50	0.18	60.40	75.00	2.0000	10yr24hr
CB49					
51	0.09	39.30	75.00	2.0000	10yr24hr
CB51					
52	0.09	39.30	75.00	2.0000	10yr24hr
CB54					
53	0.26	60.80	79.00	2.0000	10yr24hr
CB52					
54	0.19	46.00	75.00	2.0000	10yr24hr
CB53					
55	0.17	35.30	75.00	2.0000	10yr24hr
CB57					
56	0.10	33.50	75.00	2.0000	10yr24hr
CB62					
57	1.54	151.00	66.00	2.0000	10yr24hr
CB67					
58	2.24	224.00	44.00	2.0000	10yr24hr
CB68					
59	0.34	50.50	73.00	2.0000	10yr24hr
CB65					
6	0.25	65.00	57.00	2.0000	10yr24hr
CB7					
60	0.59	130.00	72.00	2.0000	10yr24hr
CB66					
61	0.39	99.00	68.00	2.0000	10yr24hr
CB69					
62	0.13	50.20	74.00	2.0000	10yr24hr
CB73					
63	0.20	48.00	81.00	2.0000	10yr24hr
CB70					
64	0.16	54.70	72.00	2.0000	10yr24hr
CB75					
65	0.09	63.80	53.00	2.0000	10yr24hr
CB74					
66	0.10	70.30	51.00	2.0000	10yr24hr
CB60					
67	0.17	54.90	83.00	2.0000	10yr24hr
CB76					
68	0.07	32.00	78.00	2.0000	10yr24hr
CB77					
69	1.20	174.00	82.00	2.0000	10yr24hr
CB61					
7	0.36	65.00	67.00	2.0000	10yr24hr
CB10					
70	0.10	36.90	80.00	2.0000	10yr24hr
CB80					
71	0.22	65.10	81.00	2.0000	10yr24hr
CB79					
72	0.54	57.40	88.00	2.0000	10yr24hr
CB82					
73	0.18	94.40	75.00	2.0000	10yr24hr
CB82					
74	1.78	240.00	84.00	2.0000	10yr24hr
CB72					

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

75	0.64	150.00	75.00	2.0000	10yr24hr
CB86					
76	0.93	500.00	80.00	2.0000	10yr24hr
CB88					
8	0.43	78.38	62.00	2.0000	10yr24hr
CB6					
9	0.32	79.00	73.00	2.0000	10yr24hr
CB34					

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
<hr/>					
CB1	JUNCTION	3146.59	5.13	50.0	
CB10	JUNCTION	3149.24	3.66	50.0	
CB11	JUNCTION	3147.29	5.92	50.0	
CB12	JUNCTION	3148.24	4.99	50.0	
CB13	JUNCTION	3147.90	5.36	50.0	
CB14	JUNCTION	3148.81	3.73	50.0	
CB15	JUNCTION	3149.25	3.30	50.0	
CB16	JUNCTION	3148.85	4.43	50.0	
CB17	JUNCTION	3146.54	4.96	50.0	
CB18	JUNCTION	3146.61	4.97	50.0	
CB19	JUNCTION	3146.64	5.55	50.0	
CB2	JUNCTION	3147.51	3.97	50.0	
CB20	JUNCTION	3147.72	6.64	50.0	
CB21	JUNCTION	3148.28	4.77	50.0	
CB22	JUNCTION	3148.45	4.63	50.0	
CB23	JUNCTION	3148.86	3.93	50.0	
CB24	JUNCTION	3150.97	3.97	50.0	
CB25	JUNCTION	3148.05	4.65	50.0	
CB26	JUNCTION	3148.83	4.37	50.0	
CB27	JUNCTION	3149.79	3.41	50.0	
CB28	JUNCTION	3148.21	5.05	50.0	
CB29	JUNCTION	3149.16	4.10	50.0	
CB3	JUNCTION	3148.41	3.19	50.0	
CB30	JUNCTION	3147.24	4.32	50.0	
CB31	JUNCTION	3147.69	5.11	50.0	
CB32	JUNCTION	3148.63	4.49	50.0	
CB33	JUNCTION	3149.17	4.39	50.0	
CB34	JUNCTION	3149.68	4.02	50.0	
CB35	JUNCTION	3149.01	4.79	50.0	
CB36	JUNCTION	3149.50	4.47	50.0	
CB37	JUNCTION	3149.50	5.39	50.0	
CB38	JUNCTION	3149.80	5.20	50.0	
CB39	JUNCTION	3150.48	4.68	50.0	
CB4	JUNCTION	3148.28	3.22	50.0	
CB40	JUNCTION	3151.68	2.25	50.0	
CB41	JUNCTION	3151.67	3.36	50.0	
CB42	JUNCTION	3149.63	5.33	50.0	
CB43	JUNCTION	3150.51	3.77	50.0	
CB44	JUNCTION	3150.86	3.91	50.0	
CB45	JUNCTION	3151.25	3.58	50.0	
CB46	JUNCTION	3151.13	3.74	50.0	

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB47	JUNCTION	3151.52	3.53	50.0
CB48	JUNCTION	3148.74	6.03	50.0
CB49	JUNCTION	3149.89	4.81	50.0
CB5	JUNCTION	3147.08	4.16	50.0
CB50	JUNCTION	3148.84	5.89	50.0
CB51	JUNCTION	3149.42	4.24	50.0
CB52	JUNCTION	3149.83	3.83	50.0
CB53	JUNCTION	3150.76	2.91	50.0
CB54	JUNCTION	3150.13	3.49	50.0
CB55	JUNCTION	3147.44	5.15	50.0
CB56	JUNCTION	3147.47	4.78	50.0
CB57	JUNCTION	3147.51	4.82	50.0
CB58	JUNCTION	3147.68	4.88	50.0
CB59	JUNCTION	3147.92	5.62	50.0
CB6	JUNCTION	3147.78	4.92	50.0
CB60	JUNCTION	3148.71	4.04	50.0
CB61	JUNCTION	3149.22	4.09	50.0
CB62	JUNCTION	3148.45	4.41	0.0
CB63	JUNCTION	3148.55	3.47	0.0
CB64	JUNCTION	3148.82	3.46	0.0
CB65	JUNCTION	3148.92	4.08	0.0
CB66	JUNCTION	3149.03	4.00	0.0
CB67	JUNCTION	3148.80	3.43	50.0
CB68	JUNCTION	3148.67	3.59	50.0
CB69	JUNCTION	3148.68	5.36	50.0
CB7	JUNCTION	3147.90	4.86	50.0
CB70	JUNCTION	3149.05	5.11	50.0
CB71	JUNCTION	3149.18	4.99	50.0
CB72	JUNCTION	3149.74	4.13	50.0
CB73	JUNCTION	3150.01	4.28	50.0
CB74	JUNCTION	3149.77	3.18	50.0
CB75	JUNCTION	3149.96	3.11	50.0
CB76	JUNCTION	3149.06	3.94	50.0
CB77	JUNCTION	3149.32	4.27	0.0
CB78	JUNCTION	3150.01	4.40	50.0
CB79	JUNCTION	3150.70	3.80	50.0
CB8	JUNCTION	3148.36	4.58	50.0
CB80	JUNCTION	3149.49	3.81	0.0
CB81	JUNCTION	3149.55	4.48	0.0
CB82	JUNCTION	3149.86	2.95	0.0
CB83	JUNCTION	3149.09	3.62	50.0
CB84	JUNCTION	3149.80	3.06	50.0
CB85	JUNCTION	3149.12	3.13	0.0
CB86	JUNCTION	3149.20	2.88	0.0
CB88	JUNCTION	3150.10	3.00	0.0
CB9	JUNCTION	3148.90	3.65	50.0
CB999	JUNCTION	3147.44	6.00	50.0
OF_North	OUTFALL	3150.50	0.25	0.0
OF_South	OUTFALL	3150.50	0.50	0.0
OFTrail	OUTFALL	0.00	0.00	0.0
CMPNorth	STORAGE	3146.85	5.25	0.0
CMPSouth	STORAGE	3146.00	5.50	0.0

Link Summary

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

Name	From Node	To Node	Type	Length	%
Slope	Roughness				
<hr/>					
C1	CB1	CMPSouth	CONDUIT	20.0	
0.4700	0.0100				
C2	CB999	CMPNorth	CONDUIT	10.0	
0.9100	0.0100				
C3	CB17	CMPSouth	CONDUIT	20.0	
0.2000	0.0100				
C4	CMPSouth	OF_South	CONDUIT	30.2	
1.6574	0.0100				
C5	CB55	CMPNorth	CONDUIT	20.7	
0.4406	0.0100				
C6	CMPNorth	OF_North	CONDUIT	18.8	
7.1875	0.0100				
SP1	CB2	CB1	CONDUIT	279.5	
0.1499	0.0100				
SP10	CB11	CB1	CONDUIT	202.0	
0.2198	0.0100				
SP11	CB12	CB11	CONDUIT	45.6	
1.5489	0.0100				
SP12	CB13	CB11	CONDUIT	120.4	
0.2999	0.0100				
SP13	CB14	CB13	CONDUIT	132.4	
0.5001	0.0100				
SP14	CB15	CB14	CONDUIT	44.3	
1.0001	0.0100				
SP15	CB16	CB13	CONDUIT	45.3	
1.5524	0.0100				
SP16	CB18	CB17	CONDUIT	20.0	
0.3750	0.0100				
SP17	CB19	CB18	CONDUIT	21.3	
0.1078	0.0100				
SP18	CB20	CB19	CONDUIT	359.5	
0.2999	0.0100				
SP19	CB21	CB20	CONDUIT	171.9	
0.1798	0.0100				
SP2	CB3	CB2	CONDUIT	124.6	
0.5218	0.0100				
SP20	CB22	CB21	CONDUIT	34.0	
0.4993	0.0100				
SP21	CB23	CB22	CONDUIT	16.2	
1.0007	0.0100				
SP22	CB24	CB23	CONDUIT	186.6	
0.9992	0.0100				
SP23	CB25	CB18	CONDUIT	199.5	
0.2201	0.0100				
SP24	CB26	CB25	CONDUIT	27.2	
0.9992	0.0100				
SP25	CB27	CB26	CONDUIT	48.4	
1.9989	0.0100				
SP26	CB28	CB25	CONDUIT	15.2	
0.9989	0.0100				
SP27	CB29	CB28	CONDUIT	47.8	
1.9989	0.0100				
SP28	CB30	CB19	CONDUIT	26.6	
0.4015	0.0100				
SP29	CB31	CB30	CONDUIT	110.6	
0.3996	0.0100				

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP3		CB4	CB2	CONDUIT	135.6
0.3835	0.0100	CB32	CB31	CONDUIT	139.3
SP30		CB33	CB32	CONDUIT	29.1
0.4990	0.0100	CB34	CB33	CONDUIT	50.6
SP31		CB35	CB32	CONDUIT	12.8
1.0003	0.0100	CB36	CB35	CONDUIT	49.1
SP32		CB37	CB20	CONDUIT	257.6
0.9990	0.0100	CB38	CB37	CONDUIT	30.3
SP33		CB39	CB38	CONDUIT	42.5
1.0027	0.0100	CB40	CB39	CONDUIT	120.5
SP34		CB41	CB39	CONDUIT	29.9
0.9998	0.0100	CB5	CB1	CONDUIT	108.3
SP35		CB42	CB37	CONDUIT	21.5
0.4997	0.0100	CB43	CB42	CONDUIT	146.1
SP36		CB44	CB43	CONDUIT	9.8
0.9982	0.0100	CB45	CB44	CONDUIT	39.5
SP37		CB46	CB43	CONDUIT	37.1
0.9995	0.0100	CB47	CB46	CONDUIT	39.5
SP38		CB48	CB20	CONDUIT	211.7
0.9992	0.0100	CB49	CB48	CONDUIT	45.1
SP39		CB50	CB48	CONDUIT	24.2
4.0008	0.0100	CB51	CB50	CONDUIT	144.0
SP4		CB6	CB5	CONDUIT	174.0
0.2198	0.0100	CB52	CB51	CONDUIT	40.3
SP40		CB53	CB52	CONDUIT	46.6
0.5986	0.0100	CB54	CB51	CONDUIT	46.4
SP41		CB55	CB55	CONDUIT	24.0
0.5997	0.0100	CB56	CB56	CONDUIT	34.8
SP42		CB57	CB56	CONDUIT	157.6
0.9957	0.0100	CB58	CB57	CONDUIT	214.7
SP43		CB59	CB58	CONDUIT	
0.9985	0.0100				
SP44					
0.9994	0.0100				
SP45					
1.0006	0.0100				
SP46					
0.2499	0.0100				
SP47					
1.9979	0.0100				
SP48					
0.4008	0.0100				
SP49					
0.3999	0.0100				
SP5					
0.3999	0.0100				
SP50					
0.3998	0.0100				
SP51					
1.9990	0.0100				
SP52					
0.9991	0.0100				
SP53					
0.1165	0.0100				
SP54					
0.1094	0.0100				
SP55					
0.1098	0.0100				
SP56					
0.1099	0.0100				

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP57		CB60	CB59	CONDUIT	194.5
0.1502	0.0100	CB61	CB60	CONDUIT	26.0
SP58		CB62	CB57	CONDUIT	35.7
0.9996	0.0100	CB7	CB6	CONDUIT	30.1
SP59		CB63	CB62	CONDUIT	30.8
0.3021	0.0100	CB64	CB63	CONDUIT	67.8
SP6		CB65	CB64	CONDUIT	47.0
0.3988	0.0100	CB66	CB65	CONDUIT	51.0
SP60		CB67	CB58	CONDUIT	60.7
0.2987	0.0100	CB68	CB58	CONDUIT	33.4
SP61		CB69	CB59	CONDUIT	173.6
0.3994	0.0100	CB70	CB69	CONDUIT	41.4
SP62		CB71	CB70	CONDUIT	42.2
0.2192	0.0100	CB72	CB71	CONDUIT	187.5
SP63		CB8	CB7	CONDUIT	41.9
0.2197	0.0100	CB73	CB71	CONDUIT	22.6
SP64		CB74	CB60	CONDUIT	63.3
0.4990	0.0100	CB75	CB74	CONDUIT	37.4
SP65		CB76	CB60	CONDUIT	44.7
0.5003	0.0100	CB77	CB76	CONDUIT	119.5
SP66		CB78	CB77	CONDUIT	11.1
0.1498	0.0100	CB79	CB78	CONDUIT	45.7
SP67		CB80	CB77	CONDUIT	33.3
0.2992	0.0100	CB81	CB80	CONDUIT	26.6
SP68		CB82	CB81	CONDUIT	147.0
0.2988	0.0100	CB9	CB8	CONDUIT	108.4
SP69		CB83	CB55	CONDUIT	23.5
0.2997	0.0100	CB84	CB83	CONDUIT	109.4
SP7		CB85	CB66	CONDUIT	38.9
0.5007	0.0100	CB86	CB85	CONDUIT	35.8
SP70					
1.4973	0.0100				
SP71					
0.4993	0.0100				
SP72					
0.5001	0.0100				
SP73					
0.2191	0.0100				
SP74					
0.2175	0.0100				
SP75					
1.7438	0.0100				
SP76					
1.4999	0.0100				
SP77					
0.5161	0.0100				
SP78					
0.2181	0.0100				
SP79					
0.2163	0.0100				
SP8					
0.5001	0.0100				
SP80					
0.6506	0.0100				
SP81					
0.6500	0.0100				
SP82					
0.2208	0.0100				
SP83					
0.2205	0.0100				

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP85 0.2194	0.0100	CB88	CB82	CONDUIT	108.5
SP9 0.9989	0.0100	CB10	CB8	CONDUIT	38.3

Cross Section Summary

Full Conduit Flow	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels
-----	-----	-----	-----	-----	-----	-----
C1 36.56	CIRCULAR	2.50	4.91	0.62	2.50	1
C2 50.87	CIRCULAR	2.50	4.91	0.62	2.50	1
C3 23.85	CIRCULAR	2.50	4.91	0.62	2.50	1
C4 297.34	RECT_OPEN	0.50	25.00	0.49	50.00	1
C5 35.39	CIRCULAR	2.50	4.91	0.62	2.50	1
C6 196.32	RECT_OPEN	0.25	12.50	0.25	50.00	1
SP1 11.39	CIRCULAR	2.00	3.14	0.50	2.00	1
SP10 13.79	CIRCULAR	2.00	3.14	0.50	2.00	1
SP11 17.00	CIRCULAR	1.50	1.77	0.38	1.50	1
SP12 7.48	CIRCULAR	1.50	1.77	0.38	1.50	1
SP13 3.28	CIRCULAR	1.00	0.79	0.25	1.00	1
SP14 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP15 5.77	CIRCULAR	1.00	0.79	0.25	1.00	1
SP16 32.65	CIRCULAR	2.50	4.91	0.62	2.50	1
SP17 17.51	CIRCULAR	2.50	4.91	0.62	2.50	1
SP18 29.20	CIRCULAR	2.50	4.91	0.62	2.50	1
SP19 12.47	CIRCULAR	2.00	3.14	0.50	2.00	1
SP2 9.86	CIRCULAR	1.50	1.77	0.38	1.50	1
SP20 20.78	CIRCULAR	2.00	3.14	0.50	2.00	1
SP21 13.66	CIRCULAR	1.50	1.77	0.38	1.50	1
SP22 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP23 6.41	CIRCULAR	1.50	1.77	0.38	1.50	1
SP24	CIRCULAR	1.00	0.79	0.25	1.00	1

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP25	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP26	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP27	CIRCULAR	1.50	1.77	0.38	1.50	1
19.31						
SP28	CIRCULAR	2.00	3.14	0.50	2.00	1
18.64						
SP29	CIRCULAR	2.00	3.14	0.50	2.00	1
18.59						
SP3	CIRCULAR	1.50	1.77	0.38	1.50	1
8.46						
SP30	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP31	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP32	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP33	CIRCULAR	1.00	0.79	0.25	1.00	1
4.64						
SP34	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP35	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP36	CIRCULAR	1.50	1.77	0.38	1.50	1
13.64						
SP37	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP38	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP39	CIRCULAR	1.00	0.79	0.25	1.00	1
9.26						
SP4	CIRCULAR	2.00	3.14	0.50	2.00	1
13.79						
SP40	CIRCULAR	1.50	1.77	0.38	1.50	1
10.57						
SP41	CIRCULAR	1.50	1.77	0.38	1.50	1
10.58						
SP42	CIRCULAR	1.00	0.79	0.25	1.00	1
4.62						
SP43	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP44	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP45	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP46	CIRCULAR	1.50	1.77	0.38	1.50	1
6.83						
SP47	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP48	CIRCULAR	1.50	1.77	0.38	1.50	1
8.65						
SP49	CIRCULAR	1.50	1.77	0.38	1.50	1
8.64						
SP5	CIRCULAR	2.00	3.14	0.50	2.00	1
18.60						
SP50	CIRCULAR	1.00	0.79	0.25	1.00	1
2.93						
SP51	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP52	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP53	CIRCULAR	2.50	4.91	0.62	2.50	1
18.20						
SP54	CIRCULAR	2.50	4.91	0.62	2.50	1
17.63						
SP55	CIRCULAR	2.50	4.91	0.62	2.50	1
17.67						
SP56	CIRCULAR	2.50	4.91	0.62	2.50	1
17.68						
SP57	CIRCULAR	2.00	3.14	0.50	2.00	1
11.40						
SP58	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP59	CIRCULAR	1.50	1.77	0.38	1.50	1
7.51						
SP6	CIRCULAR	2.00	3.14	0.50	2.00	1
18.57						
SP60	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP61	CIRCULAR	1.50	1.77	0.38	1.50	1
8.63						
SP62	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP63	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP64	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP65	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP66	CIRCULAR	2.00	3.14	0.50	2.00	1
11.38						
SP67	CIRCULAR	1.50	1.77	0.38	1.50	1
7.47						
SP68	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP69	CIRCULAR	1.50	1.77	0.38	1.50	1
7.48						
SP7	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP70	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP71	CIRCULAR	1.00	0.79	0.25	1.00	1
3.27						
SP72	CIRCULAR	1.00	0.79	0.25	1.00	1
3.28						
SP73	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP74	CIRCULAR	1.50	1.77	0.38	1.50	1
6.37						
SP75	CIRCULAR	1.00	0.79	0.25	1.00	1
6.12						
SP76	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP77	CIRCULAR	1.50	1.77	0.38	1.50	1
9.81						
SP78	CIRCULAR	1.50	1.77	0.38	1.50	1
6.38						
SP79	CIRCULAR	1.50	1.77	0.38	1.50	1
6.35						

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP8	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP80	CIRCULAR	1.00	0.79	0.25	1.00	1
3.74						
SP81	CIRCULAR	1.00	0.79	0.25	1.00	1
3.73						
SP82	CIRCULAR	1.50	1.77	0.38	1.50	1
6.42						
SP83	CIRCULAR	1.50	1.77	0.38	1.50	1
6.41						
SP85	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP9	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff	YES
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	YES
Water Quality	NO
Infiltration Method	HORTON
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	01/27/2025 00:00:00
Ending Date	01/30/2025 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:00:02
Wet Time Step	00:00:30
Dry Time Step	00:05:00
Routing Time Step	2.00 sec
Variable Time Step	NO
Maximum Trials	16
Number of Threads	8
Head Tolerance	0.000500 ft

Runoff Quantity Continuity	Volume acre-feet	Depth inches
-----	-----	-----
Total Precipitation	5.544	1.660
Evaporation Loss	0.000	0.000
Infiltration Loss	1.835	0.549
Surface Runoff	3.655	1.094
Final Storage	0.055	0.016
Continuity Error (%)	-0.004	

Flow Routing Continuity	Volume acre-feet	Volume 10^6 gal
-----	-----	-----

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	3.655	1.191
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.219	0.071
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	3.435	1.119
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.031	

Highest Flow Instability Indexes

Link C2 (9)

Most Frequent Nonconverging Nodes

Convergence obtained at all time steps.

Routing Time Step Summary

Minimum Time Step	:	2.00 sec
Average Time Step	:	2.00 sec
Maximum Time Step	:	2.00 sec
% of Time in Steady State	:	0.00
Average Iterations per Step	:	2.05
% of Steps Not Converging	:	0.00

Subcatchment Runoff Summary

Perv	Total	Total	Total	Total	Total	Total	Imperv
		Total	Peak	Runoff			
			Precip	Runon	Evap	Infil	Runoff
Runoff	Runoff	Runoff	Runoff	Coeff			
Subcatchment			in	in	in	in	in
in	in	10^6 gal	CFS				
1			1.66	0.00	0.00	0.33	1.31
0.01	1.31	0.03	1.30	0.791			
10			1.66	0.00	0.00	0.46	1.19
0.01	1.19	0.01	0.31	0.715			
11			1.66	0.00	0.00	0.58	1.07
0.01	1.07	0.05	2.23	0.644			
12			1.66	0.00	0.00	1.50	0.15

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

13			1.66	0.00	0.00	0.54	1.10
0.01	1.10	0.04	1.91	0.664			
14			1.66	0.00	0.00	0.41	1.24
0.01	1.24	0.01	0.30	0.745			
15			1.66	0.00	0.00	0.41	1.24
0.01	1.24	0.01	0.31	0.745			
16			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.10	0.748			
17			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.10	0.748			
18			1.66	0.00	0.00	0.41	1.24
0.01	1.24	0.01	0.37	0.744			
19			1.66	0.00	0.00	0.41	1.24
0.01	1.24	0.01	0.37	0.744			
2			1.66	0.00	0.00	0.48	1.17
0.01	1.17	0.03	1.50	0.703			
20			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.15	0.746			
21			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.15	0.746			
22			1.66	0.00	0.00	0.44	1.19
0.01	1.20	0.01	0.67	0.723			
23			1.66	0.00	0.00	0.60	1.04
0.01	1.04	0.02	1.04	0.627			
24			1.66	0.00	0.00	0.56	1.09
0.01	1.09	0.04	1.78	0.654			
25			1.66	0.00	0.00	0.51	1.13
0.01	1.13	0.05	2.46	0.683			
26			1.66	0.00	0.00	0.68	0.97
0.00	0.97	0.07	3.46	0.584			
27			1.66	0.00	0.00	0.56	1.09
0.01	1.09	0.02	0.78	0.654			
28			1.66	0.00	0.00	0.44	1.20
0.01	1.20	0.02	0.98	0.723			
29			1.66	0.00	0.00	0.46	1.18
0.01	1.18	0.01	0.50	0.714			
3			1.66	0.00	0.00	0.78	0.86
0.01	0.86	0.01	0.43	0.520			
30			1.66	0.00	0.00	0.46	1.19
0.01	1.19	0.01	0.36	0.715			
31			1.66	0.00	0.00	0.94	0.71
0.01	0.71	0.01	0.65	0.428			
32			1.66	0.00	0.00	0.46	1.18
0.01	1.18	0.02	0.88	0.714			
33			1.66	0.00	0.00	0.67	0.98
0.01	0.98	0.01	0.26	0.589			
34			1.66	0.00	0.00	0.64	1.01
0.01	1.01	0.00	0.25	0.608			
35			1.66	0.00	0.00	0.59	1.06
0.01	1.06	0.01	0.31	0.637			
36			1.66	0.00	0.00	0.44	1.21
0.01	1.21	0.00	0.12	0.727			
37			1.66	0.00	0.00	0.44	1.20
0.01	1.20	0.01	0.54	0.725			
38			1.66	0.00	0.00	0.44	1.20
0.01	1.20	0.00	0.20	0.725			
39			1.66	0.00	0.00	0.24	1.40
0.01	1.40	0.03	1.27	0.840			
4			1.66	0.00	0.00	0.45	1.19
0.01	1.19	0.01	0.41	0.717			

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

40			1.66	0.00	0.00	0.32	1.32
0.01	1.32	0.01	0.35	0.793			
41			1.66	0.00	0.00	0.54	1.10
0.01	1.10	0.03	1.42	0.663			
42			1.66	0.00	0.00	0.84	0.81
0.00	0.81	0.04	1.93	0.486			
43			1.66	0.00	0.00	0.71	0.94
0.01	0.94	0.02	0.97	0.567			
44			1.66	0.00	0.00	0.61	1.04
0.01	1.04	0.02	1.00	0.626			
45			1.66	0.00	0.00	0.39	1.25
0.01	1.25	0.04	2.15	0.753			
46			1.66	0.00	0.00	0.26	1.38
0.01	1.38	0.02	1.02	0.831			
47			1.66	0.00	0.00	0.41	1.23
0.01	1.23	0.01	0.51	0.742			
48			1.66	0.00	0.00	0.41	1.23
0.01	1.23	0.01	0.51	0.742			
49			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.01	0.31	0.745			
5			1.66	0.00	0.00	0.64	1.01
0.01	1.01	0.01	0.28	0.608			
50			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.01	0.31	0.745			
51			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.16	0.746			
52			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.16	0.746			
53			1.66	0.00	0.00	0.34	1.30
0.01	1.30	0.01	0.46	0.783			
54			1.66	0.00	0.00	0.41	1.24
0.01	1.24	0.01	0.32	0.744			
55			1.66	0.00	0.00	0.41	1.23
0.01	1.23	0.01	0.29	0.743			
56			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.00	0.17	0.745			
57			1.66	0.00	0.00	0.56	1.08
0.00	1.08	0.05	2.16	0.653			
58			1.66	0.00	0.00	0.92	0.72
0.01	0.72	0.04	2.19	0.436			
59			1.66	0.00	0.00	0.44	1.20
0.01	1.20	0.01	0.54	0.723			
6			1.66	0.00	0.00	0.70	0.94
0.01	0.94	0.01	0.33	0.568			
60			1.66	0.00	0.00	0.46	1.19
0.01	1.19	0.02	0.96	0.714			
61			1.66	0.00	0.00	0.52	1.12
0.01	1.12	0.01	0.60	0.676			
62			1.66	0.00	0.00	0.42	1.22
0.01	1.22	0.00	0.22	0.736			
63			1.66	0.00	0.00	0.31	1.33
0.01	1.33	0.01	0.36	0.803			
64			1.66	0.00	0.00	0.45	1.19
0.01	1.19	0.01	0.27	0.716			
65			1.66	0.00	0.00	0.76	0.89
0.02	0.89	0.00	0.12	0.534			
66			1.66	0.00	0.00	0.79	0.85
0.02	0.85	0.00	0.13	0.515			
67			1.66	0.00	0.00	0.27	1.37
0.01	1.37	0.01	0.32	0.823			

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

68			1.66	0.00	0.00	0.35	1.29
0.01	1.29	0.00	0.12	0.776			
69			1.66	0.00	0.00	0.29	1.35
0.01	1.35	0.04	2.13	0.811			
7			1.66	0.00	0.00	0.54	1.10
0.01	1.10	0.01	0.55	0.665			
70			1.66	0.00	0.00	0.32	1.32
0.01	1.32	0.00	0.18	0.794			
71			1.66	0.00	0.00	0.31	1.33
0.01	1.33	0.01	0.40	0.803			
72			1.66	0.00	0.00	0.20	1.44
0.00	1.44	0.02	0.98	0.869			
73			1.66	0.00	0.00	0.40	1.24
0.01	1.24	0.01	0.32	0.747			
74			1.66	0.00	0.00	0.26	1.38
0.00	1.38	0.07	3.21	0.831			
75			1.66	0.00	0.00	0.41	1.23
0.01	1.23	0.02	1.08	0.744			
76			1.66	0.00	0.00	0.32	1.32
0.01	1.32	0.03	1.73	0.795			
8			1.66	0.00	0.00	0.62	1.02
0.01	1.02	0.01	0.60	0.616			
9			1.66	0.00	0.00	0.44	1.20
0.01	1.20	0.01	0.52	0.725			

Node Depth Summary

Node	Type	Average Depth	Maximum Depth	Maximum HGL	Time of Max Occurrence	Reported Max Depth
		Feet	Feet	Feet	days hr:min	Feet
CB1	JUNCTION	0.19	1.98	3148.57	0 12:53	1.98
CB10	JUNCTION	0.01	0.25	3149.49	0 11:54	0.25
CB11	JUNCTION	0.10	1.28	3148.57	0 12:55	1.28
CB12	JUNCTION	0.02	0.33	3148.57	0 12:51	0.33
CB13	JUNCTION	0.04	0.67	3148.57	0 12:55	0.67
CB14	JUNCTION	0.02	0.31	3149.12	0 11:54	0.31
CB15	JUNCTION	0.01	0.18	3149.43	0 11:54	0.18
CB16	JUNCTION	0.01	0.09	3148.94	0 11:51	0.09
CB17	JUNCTION	0.22	2.03	3148.57	0 12:53	2.03
CB18	JUNCTION	0.20	1.98	3148.59	0 11:55	1.98
CB19	JUNCTION	0.21	2.16	3148.80	0 11:55	2.16
CB2	JUNCTION	0.08	1.06	3148.57	0 12:55	1.06
CB20	JUNCTION	0.08	1.40	3149.12	0 11:55	1.40
CB21	JUNCTION	0.05	1.07	3149.34	0 11:54	1.07
CB22	JUNCTION	0.03	1.01	3149.45	0 11:54	1.01
CB23	JUNCTION	0.03	0.72	3149.57	0 11:54	0.72
CB24	JUNCTION	0.02	0.32	3151.29	0 11:54	0.32
CB25	JUNCTION	0.04	0.61	3148.66	0 11:55	0.61
CB26	JUNCTION	0.01	0.19	3149.02	0 11:54	0.19
CB27	JUNCTION	0.01	0.10	3149.90	0 11:54	0.10
CB28	JUNCTION	0.02	0.50	3148.71	0 11:55	0.50
CB29	JUNCTION	0.01	0.17	3149.33	0 11:54	0.17
CB3	JUNCTION	0.01	0.21	3148.62	0 11:54	0.21

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB30	JUNCTION	0.11	1.58	3148.82	0	11:55	1.58
CB31	JUNCTION	0.07	1.18	3148.86	0	11:56	1.18
CB32	JUNCTION	0.03	0.55	3149.19	0	11:54	0.55
CB33	JUNCTION	0.02	0.34	3149.52	0	11:54	0.34
CB34	JUNCTION	0.01	0.24	3149.91	0	11:54	0.24
CB35	JUNCTION	0.02	0.52	3149.53	0	11:54	0.52
CB36	JUNCTION	0.02	0.34	3149.84	0	11:54	0.34
CB37	JUNCTION	0.03	0.74	3150.25	0	11:54	0.74
CB38	JUNCTION	0.02	0.56	3150.36	0	11:54	0.56
CB39	JUNCTION	0.02	0.46	3150.94	0	11:54	0.46
CB4	JUNCTION	0.03	0.44	3148.73	0	11:54	0.44
CB40	JUNCTION	0.02	0.29	3151.98	0	11:54	0.29
CB41	JUNCTION	0.01	0.12	3151.80	0	11:54	0.12
CB42	JUNCTION	0.03	0.70	3150.33	0	11:54	0.70
CB43	JUNCTION	0.03	0.53	3151.03	0	11:54	0.53
CB44	JUNCTION	0.01	0.31	3151.17	0	11:54	0.31
CB45	JUNCTION	0.01	0.19	3151.44	0	11:54	0.19
CB46	JUNCTION	0.02	0.54	3151.67	0	11:54	0.54
CB47	JUNCTION	0.02	0.42	3151.94	0	11:54	0.42
CB48	JUNCTION	0.03	0.55	3149.30	0	11:55	0.55
CB49	JUNCTION	0.01	0.15	3150.04	0	11:54	0.15
CB5	JUNCTION	0.13	1.49	3148.57	0	12:52	1.49
CB50	JUNCTION	0.02	0.52	3149.37	0	11:54	0.52
CB51	JUNCTION	0.02	0.37	3149.79	0	11:54	0.37
CB52	JUNCTION	0.02	0.40	3150.23	0	11:54	0.40
CB53	JUNCTION	0.01	0.15	3150.91	0	11:54	0.15
CB54	JUNCTION	0.01	0.13	3150.26	0	11:54	0.13
CB55	JUNCTION	0.25	2.27	3149.71	0	13:07	2.27
CB56	JUNCTION	0.25	2.24	3149.71	0	13:06	2.24
CB57	JUNCTION	0.25	2.21	3149.71	0	13:06	2.21
CB58	JUNCTION	0.22	2.12	3149.80	0	11:56	2.12
CB59	JUNCTION	0.19	2.03	3149.95	0	11:56	2.03
CB6	JUNCTION	0.06	0.79	3148.57	0	12:52	0.79
CB60	JUNCTION	0.10	1.42	3150.13	0	11:55	1.42
CB61	JUNCTION	0.04	0.93	3150.15	0	11:55	0.93
CB62	JUNCTION	0.11	1.26	3149.71	0	13:06	1.26
CB63	JUNCTION	0.10	1.17	3149.71	0	13:06	1.17
CB64	JUNCTION	0.07	0.89	3149.71	0	13:06	0.89
CB65	JUNCTION	0.07	0.83	3149.75	0	11:54	0.83
CB66	JUNCTION	0.05	0.77	3149.81	0	11:54	0.77
CB67	JUNCTION	0.07	1.02	3149.83	0	11:56	1.02
CB68	JUNCTION	0.08	1.15	3149.82	0	11:56	1.15
CB69	JUNCTION	0.10	1.33	3150.00	0	11:55	1.33
CB7	JUNCTION	0.05	0.67	3148.57	0	12:52	0.67
CB70	JUNCTION	0.06	1.08	3150.13	0	11:55	1.08
CB71	JUNCTION	0.05	1.06	3150.24	0	11:55	1.06
CB72	JUNCTION	0.03	0.76	3150.50	0	11:54	0.76
CB73	JUNCTION	0.01	0.23	3150.24	0	11:55	0.23
CB74	JUNCTION	0.01	0.37	3150.14	0	11:56	0.37
CB75	JUNCTION	0.01	0.21	3150.18	0	11:56	0.21
CB76	JUNCTION	0.06	1.14	3150.20	0	11:55	1.14
CB77	JUNCTION	0.05	1.04	3150.36	0	11:55	1.04
CB78	JUNCTION	0.01	0.36	3150.37	0	11:55	0.36
CB79	JUNCTION	0.01	0.18	3150.88	0	11:54	0.18
CB8	JUNCTION	0.03	0.57	3148.92	0	11:54	0.57
CB80	JUNCTION	0.03	0.95	3150.44	0	11:55	0.95
CB81	JUNCTION	0.04	0.95	3150.50	0	11:54	0.95

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB82	JUNCTION	0.04	0.88	3150.74	0	11:54	0.88
CB83	JUNCTION	0.05	0.62	3149.71	0	13:07	0.62
CB84	JUNCTION	0.02	0.52	3150.32	0	11:54	0.52
CB85	JUNCTION	0.04	0.70	3149.82	0	11:54	0.70
CB86	JUNCTION	0.04	0.64	3149.84	0	11:54	0.64
CB88	JUNCTION	0.03	0.74	3150.84	0	11:54	0.74
CB9	JUNCTION	0.02	0.38	3149.28	0	11:54	0.38
CB999	JUNCTION	0.23	2.27	3149.71	0	13:07	2.27
OF_North	OUTFALL	0.00	0.00	3150.50	0	00:00	0.00
OF_South	OUTFALL	0.00	0.00	3150.50	0	00:00	0.00
OFTrail	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
CMPNorth	STORAGE	0.31	2.86	3149.71	0	13:07	2.86
CMPSouth	STORAGE	0.25	2.57	3148.57	0	12:53	2.57

Node Inflow Summary

Total Inflow Volume Node gal	Flow Balance Error Percent	Type	Maximum Lateral	Maximum Inflow	Time of Max Occurrence		Lateral Inflow Volume	
			CFS	CFS	days	hr:min	10^6 gal	10^6
CB1 0.226	-0.193	JUNCTION	2.12	10.81	0	11:54	0.0425	
CB10 0.0109	0.001	JUNCTION	0.55	0.55	0	11:54	0.0109	
CB11 0.0303	-0.321	JUNCTION	0.37	1.54	0	11:54	0.00731	
CB12 0.00731	0.091	JUNCTION	0.37	0.37	0	11:54	0.00731	
CB13 0.0158	0.484	JUNCTION	0.10	0.80	0	11:54	0.00189	
CB14 0.012	0.241	JUNCTION	0.30	0.61	0	11:54	0.00585	
CB15 0.00617	-0.002	JUNCTION	0.31	0.31	0	11:54	0.00617	
CB16 0.00189	0.207	JUNCTION	0.10	0.10	0	11:54	0.00189	
CB17 0.394	0.068	JUNCTION	0.00	17.72	0	11:55	0	
CB18 0.394	-0.036	JUNCTION	0.67	17.73	0	11:55	0.0135	
CB19 0.354	0.034	JUNCTION	2.59	16.09	0	11:55	0.0524	
CB2 0.0467	0.418	JUNCTION	0.43	2.31	0	11:54	0.00826	
CB20 0.218	-0.646	JUNCTION	0.00	10.72	0	11:54	0	
CB21 0.102	0.655	JUNCTION	1.00	5.06	0	11:54	0.0197	

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB22		JUNCTION	0.97	4.09	0	11:54	0.0191
0.0827	-0.006	JUNCTION	2.15	3.16	0	11:54	0.0429
CB23		JUNCTION	1.02	1.02	0	11:54	0.0206
0.0636	-0.007	JUNCTION	0.00	1.28	0	11:54	0
CB24		JUNCTION	0.15	0.30	0	11:54	0.00288
0.0206	0.019	JUNCTION	0.15	0.15	0	11:54	0.00288
CB25		JUNCTION	0.51	1.02	0	11:54	0.0105
0.0267	0.585	JUNCTION	0.51	0.51	0	11:54	0.0105
CB26		JUNCTION	0.41	0.41	0	11:54	0.00799
0.00577	0.003	JUNCTION	0.00	3.85	0	11:54	0
CB27		JUNCTION	1.78	4.06	0	11:54	0.0362
0.00288	-0.001	JUNCTION	0.00	2.30	0	11:54	0
CB28		JUNCTION	0.31	0.83	0	11:54	0.00604
0.0209	0.005	JUNCTION	0.52	0.52	0	11:54	0.0103
CB29		JUNCTION	0.50	1.48	0	11:54	0.00983
0.0105	-0.019	JUNCTION	0.98	0.98	0	11:54	0.0198
CB3		JUNCTION	0.00	4.13	0	11:54	0
0.00799	0.244	JUNCTION	0.25	1.68	0	11:54	0.00485
CB30		JUNCTION	0.26	1.45	0	11:54	0.00515
0.0822	0.064	JUNCTION	1.50	1.50	0	11:54	0.0307
CB31		JUNCTION	0.88	0.88	0	11:54	0.0175
0.082	-0.240	JUNCTION	0.31	0.31	0	11:54	0.006
CB32		JUNCTION	0.12	2.47	0	11:54	0.0024
0.046	0.338	JUNCTION	0.00	2.36	0	11:54	0
CB33		JUNCTION	0.54	1.81	0	11:54	0.0107
0.0164	0.007	JUNCTION	1.27	1.27	0	11:54	0.0262
CB34		JUNCTION	0.00	1.68	0	11:54	0
0.0103	0.001	JUNCTION	0.31	0.31	0	11:54	0.00684
CB35		JUNCTION	0.54	1.81	0	11:54	0.00596
0.0296	0.001	JUNCTION	0.35	0.35	0	11:54	0
CB36		JUNCTION	0.54	1.81	0	11:54	0.00393
0.0198	-0.000	JUNCTION	0.00	2.36	0	11:54	0
CB37		JUNCTION	0.20	0.55	0	11:54	0.00684
0.0836	0.598	JUNCTION	0.35	0.35	0	11:54	0
CB38		JUNCTION	0.54	1.81	0	11:54	0.0198
0.0335	-0.002	JUNCTION	0.00	2.36	0	11:54	0
CB39		JUNCTION	0.20	0.55	0	11:54	0.00515
0.0287	0.001	JUNCTION	1.50	1.50	0	11:54	0.0307
CB4		JUNCTION	0.88	0.88	0	11:54	0.0175
0.0307	0.503	JUNCTION	0.31	0.31	0	11:54	0.006
CB40		JUNCTION	0.12	2.47	0	11:54	0.0024
0.0175	-0.001	JUNCTION	0.00	2.36	0	11:54	0
CB41		JUNCTION	0.31	0.31	0	11:54	0.006
0.006	-0.000	JUNCTION	0.54	1.81	0	11:54	0
CB42		JUNCTION	0.00	2.36	0	11:54	0
0.0501	0.004	JUNCTION	0.20	0.55	0	11:54	0.00393
CB43		JUNCTION	0.35	0.35	0	11:54	0.00684
0.0477	-0.005	JUNCTION	0.54	1.81	0	11:54	0.00596
CB44		JUNCTION	0.00	2.36	0	11:54	0
0.0108	0.012	JUNCTION	0.20	0.55	0	11:54	0.0107
CB45		JUNCTION	0.35	0.35	0	11:54	0.0262
0.00684	0.000	JUNCTION	0.54	1.81	0	11:54	0
CB46		JUNCTION	0.00	2.36	0	11:54	0
0.0369	0.000	JUNCTION	0.20	0.55	0	11:54	0
CB47		JUNCTION	0.35	0.35	0	11:54	0.0107
0.0262	-0.000	JUNCTION	0.54	1.81	0	11:54	0
CB48		JUNCTION	0.00	2.36	0	11:54	0
0.0337	0.785	JUNCTION	0.20	0.55	0	11:54	0.0262
CB49		JUNCTION	0.35	0.35	0	11:54	0.00684
0.00596	0.046	JUNCTION	0.54	1.81	0	11:54	0.00596

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB5		JUNCTION	2.23	5.20	0	11:54	0.0454
0.107	0.248	JUNCTION	0.31	1.40	0	11:54	0.00596
CB50		JUNCTION	0.16	1.10	0	11:54	0.00309
0.0277	0.001	JUNCTION	0.46	0.79	0	11:54	0.00921
CB51		JUNCTION	0.32	0.32	0	11:54	0.00636
0.0218	-0.001	JUNCTION	0.16	0.16	0	11:54	0.00309
CB52		JUNCTION	0.00	18.17	0	11:56	0
0.0156	0.001	JUNCTION	0.78	16.65	0	11:56	0.0157
CB53		JUNCTION	0.29	16.00	0	11:56	0.0057
0.00636	-0.001	JUNCTION	0.00	13.49	0	11:55	0
CB54		JUNCTION	0.00	9.83	0	11:55	0
0.00309	0.004	JUNCTION	0.60	3.01	0	11:54	0.0118
CB55		JUNCTION	0.13	6.18	0	11:54	0.0024
0.425	0.057	JUNCTION	0.17	2.46	0	11:54	0.00336
CB56		JUNCTION	0.00	2.35	0	11:54	0
0.389	-0.000	JUNCTION	0.00	2.43	0	11:54	0.011
CB57		JUNCTION	0.54	2.49	0	11:54	0.0437
0.374	-0.012	JUNCTION	0.96	1.99	0	11:54	0.0452
CB58		JUNCTION	2.16	2.16	0	11:54	0.0441
0.313	-0.022	JUNCTION	2.19	2.19	0	11:54	0.0118
CB59		JUNCTION	0.60	4.08	0	11:54	0.0065
0.223	-0.361	JUNCTION	0.33	2.42	0	11:54	0.00716
CB6		JUNCTION	0.36	3.58	0	11:54	0.0026
0.0616	-0.084	JUNCTION	0.00	3.37	0	11:54	0.0665
CB60		JUNCTION	3.21	3.21	0	11:54	0.00432
0.134	0.335	JUNCTION	0.22	0.22	0	11:54	0.00226
CB61		JUNCTION	0.12	0.38	0	11:54	0.00519
0.0437	0.013	JUNCTION	0.27	0.27	0	11:54	0.00626
CB62		JUNCTION	0.32	3.74	0	11:54	0
0.0548	0.105	JUNCTION	0.00	3.74	0	11:54	0
CB63		JUNCTION	0.00	3.74	0	11:54	0
0.0514	0.013	JUNCTION	0.00	3.74	0	11:54	0
CB64		JUNCTION	0.00	3.74	0	11:54	0
0.0514	-0.009	JUNCTION	0.00	3.74	0	11:54	0
CB65		JUNCTION	0.00	3.74	0	11:54	0
0.0514	-0.002	JUNCTION	0.00	3.74	0	11:54	0
CB66		JUNCTION	0.00	3.74	0	11:54	0
0.0405	-0.005	JUNCTION	0.00	3.74	0	11:54	0
CB67		JUNCTION	0.00	3.74	0	11:54	0
0.0452	0.112	JUNCTION	0.00	3.74	0	11:54	0
CB68		JUNCTION	0.00	3.74	0	11:54	0
0.0441	0.075	JUNCTION	0.00	3.74	0	11:54	0
CB69		JUNCTION	0.00	3.74	0	11:54	0
0.0897	0.178	JUNCTION	0.00	3.74	0	11:54	0
CB7		JUNCTION	0.00	3.74	0	11:54	0
0.0497	-0.052	JUNCTION	0.00	3.74	0	11:54	0
CB70		JUNCTION	0.00	3.74	0	11:54	0
0.078	0.162	JUNCTION	0.00	3.74	0	11:54	0
CB71		JUNCTION	0.00	3.74	0	11:54	0
0.0709	0.016	JUNCTION	0.00	3.74	0	11:54	0
CB72		JUNCTION	0.00	3.74	0	11:54	0
0.0665	-0.026	JUNCTION	0.00	3.74	0	11:54	0
CB73		JUNCTION	0.00	3.74	0	11:54	0
0.00432	0.006	JUNCTION	0.00	3.74	0	11:54	0
CB74		JUNCTION	0.00	3.74	0	11:54	0
0.00745	0.312	JUNCTION	0.00	3.74	0	11:54	0
CB75		JUNCTION	0.00	3.74	0	11:54	0
0.00519	-0.006	JUNCTION	0.00	3.74	0	11:54	0
CB76		JUNCTION	0.00	3.74	0	11:54	0
0.0807	0.128	JUNCTION	0.00	3.74	0	11:54	0

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

CB77		JUNCTION	0.12	3.51	0	11:54	0.00233
0.0744	-0.017						
CB78		JUNCTION	0.00	0.40	0	11:54	0
0.00785	0.015						
CB79		JUNCTION	0.40	0.40	0	11:54	0.00785
0.00785	-0.002						
CB8		JUNCTION	0.28	2.11	0	11:54	0.00542
0.0433	0.061						
CB80		JUNCTION	0.18	3.06	0	11:54	0.00354
0.0642	-0.001						
CB81		JUNCTION	0.00	2.95	0	11:54	0
0.0607	0.007						
CB82		JUNCTION	1.30	3.01	0	11:54	0.0273
0.0607	-0.000						
CB83		JUNCTION	0.00	1.78	0	11:54	0
0.0359	0.109						
CB84		JUNCTION	1.78	1.78	0	11:54	0.0359
0.0359	-0.022						
CB85		JUNCTION	0.00	1.07	0	11:54	0
0.0214	0.003						
CB86		JUNCTION	1.08	1.08	0	11:54	0.0214
0.0214	-0.006						
CB88		JUNCTION	1.73	1.73	0	11:54	0.0333
0.0333	-0.013						
CB9		JUNCTION	1.30	1.30	0	11:54	0.0269
0.0269	-0.004						
CB999		JUNCTION	3.46	3.46	0	11:54	0.0729
0.0729	0.002						
OF_North		OUTFALL	0.00	0.00	0	00:00	0
0	0.000 gal						
OF_South		OUTFALL	0.00	0.00	0	00:00	0
0	0.000 gal						
OFTrail		OUTFALL	3.51	3.51	0	11:54	0.0714
0.0714	0.000						
CMPNorth		STORAGE	0.00	21.19	0	11:55	0
0.498	-0.043						
CMPSouth		STORAGE	0.00	27.50	0	11:55	0
0.621	-0.053						

Node Surcharge Summary

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

Max Occurrence	Maximum Storage hr:min	Maximum Outflow CFS	Average	Avg	Evap	Exfil	Maximum	Max	Time of
			Volume 1000 ft ³	Pcnt Full	Pcnt Loss	Pcnt Loss	Volume 1000 ft ³	Pcnt Full	days
CMPNorth	13:07	1.29	2.748	7.0	0.0	100.0	26.972	68.8	0
CMPSouth	12:53	1.76	2.907	5.2	0.0	100.1	32.560	58.0	0

Outfall Loading Summary

Outfall Node	Flow Freq	Avg	Max	Total
	Pcnt	Flow CFS	Flow CFS	Volume 10 ⁶ gal
OF_North	0.00	0.00	0.00	0.000
OF_South	0.00	0.00	0.00	0.000
OFTail	35.79	0.10	3.51	0.071
System	11.93	0.10	3.51	0.071

Link Flow Summary

Link	Type	Maximum	Time of Max	Maximum	Max/	Max/
		Flow CFS	Occurrence days hr:min	Veloc ft/sec	Full Flow	Full Depth
C1	CONDUIT	10.28	0 11:53	5.15	0.28	0.81
C2	CONDUIT	3.44	0 11:54	3.96	0.07	0.93
C3	CONDUIT	17.72	0 11:55	5.20	0.74	0.82
C4	CONDUIT	0.00	0 00:00	0.00	0.00	0.00
C5	CONDUIT	18.17	0 11:56	5.90	0.51	0.93
C6	CONDUIT	0.00	0 00:00	0.00	0.00	0.00
SP1	CONDUIT	2.26	0 11:54	2.45	0.20	0.63
SP10	CONDUIT	1.38	0 11:53	1.58	0.10	0.75
SP11	CONDUIT	0.37	0 11:54	3.51	0.02	0.45
SP12	CONDUIT	0.80	0 11:54	2.58	0.11	0.57
SP13	CONDUIT	0.61	0 11:54	3.07	0.19	0.30
SP14	CONDUIT	0.31	0 11:54	2.14	0.07	0.24
SP15	CONDUIT	0.10	0 11:54	2.71	0.02	0.22
SP16	CONDUIT	17.72	0 11:55	4.39	0.54	0.80
SP17	CONDUIT	15.99	0 11:55	3.68	0.91	0.83
SP18	CONDUIT	10.23	0 11:55	2.74	0.35	0.71
SP19	CONDUIT	4.96	0 11:54	3.45	0.40	0.55
SP2	CONDUIT	0.41	0 11:54	2.16	0.04	0.32

Paisley Park Subdivision
10-year, 24-hour PCSWMM Results

SP20	CONDUIT	4.07	0	11:54	2.74	0.20	0.52
SP21	CONDUIT	3.13	0	11:54	4.53	0.23	0.49
SP22	CONDUIT	1.02	0	11:54	4.14	0.22	0.39
SP23	CONDUIT	1.17	0	11:55	2.33	0.18	0.53
SP24	CONDUIT	0.30	0	11:54	3.03	0.06	0.18
SP25	CONDUIT	0.15	0	11:54	2.03	0.02	0.15
SP26	CONDUIT	0.99	0	11:54	2.17	0.07	0.37
SP27	CONDUIT	0.51	0	11:54	2.01	0.03	0.22
SP28	CONDUIT	3.76	0	11:54	2.66	0.20	0.81
SP29	CONDUIT	3.85	0	11:54	2.72	0.21	0.69
SP3	CONDUIT	1.49	0	11:54	3.51	0.18	0.37
SP30	CONDUIT	2.29	0	11:54	3.63	0.24	0.49
SP31	CONDUIT	0.83	0	11:54	3.84	0.18	0.32
SP32	CONDUIT	0.52	0	11:54	2.78	0.11	0.29
SP33	CONDUIT	1.48	0	11:54	4.27	0.32	0.45
SP34	CONDUIT	0.98	0	11:54	3.05	0.21	0.43
SP35	CONDUIT	4.14	0	11:54	4.68	0.43	0.54
SP36	CONDUIT	1.68	0	11:54	2.45	0.12	0.43
SP37	CONDUIT	1.44	0	11:54	4.59	0.31	0.42
SP38	CONDUIT	0.87	0	11:54	3.23	0.19	0.38
SP39	CONDUIT	0.31	0	11:54	1.64	0.03	0.29
SP4	CONDUIT	5.07	0	11:54	3.33	0.37	0.80
SP40	CONDUIT	2.47	0	11:54	2.93	0.23	0.48
SP41	CONDUIT	2.35	0	11:54	3.46	0.22	0.41
SP42	CONDUIT	0.55	0	11:54	3.12	0.12	0.29
SP43	CONDUIT	0.35	0	11:54	2.26	0.08	0.25
SP44	CONDUIT	1.81	0	11:54	4.79	0.39	0.49
SP45	CONDUIT	1.27	0	11:54	3.44	0.27	0.48
SP46	CONDUIT	1.64	0	11:54	2.70	0.24	0.49
SP47	CONDUIT	0.31	0	11:54	3.43	0.05	0.22
SP48	CONDUIT	1.38	0	11:54	2.47	0.16	0.36
SP49	CONDUIT	1.10	0	11:54	2.47	0.13	0.30
SP5	CONDUIT	3.00	0	11:54	2.60	0.16	0.57
SP50	CONDUIT	0.78	0	11:54	2.88	0.27	0.38
SP51	CONDUIT	0.32	0	11:54	1.81	0.05	0.28
SP52	CONDUIT	0.16	0	11:54	2.70	0.03	0.13
SP53	CONDUIT	16.66	0	11:56	4.41	0.92	0.90
SP54	CONDUIT	16.01	0	11:56	3.88	0.91	0.89
SP55	CONDUIT	13.50	0	11:56	3.08	0.76	0.85
SP56	CONDUIT	9.78	0	11:56	2.25	0.55	0.83
SP57	CONDUIT	5.92	0	11:54	3.07	0.52	0.74
SP58	CONDUIT	2.11	0	11:54	3.27	0.15	0.70
SP59	CONDUIT	2.43	0	11:55	3.00	0.32	0.87
SP6	CONDUIT	2.42	0	11:54	2.90	0.13	0.37
SP60	CONDUIT	2.30	0	11:54	2.51	0.31	0.81
SP61	CONDUIT	2.35	0	11:54	2.63	0.27	0.69
SP62	CONDUIT	2.43	0	11:54	2.90	0.38	0.57
SP63	CONDUIT	1.95	0	11:54	2.32	0.30	0.53
SP64	CONDUIT	2.10	0	11:54	3.29	0.22	0.78
SP65	CONDUIT	2.15	0	11:54	3.32	0.22	0.82
SP66	CONDUIT	3.93	0	11:55	2.56	0.35	0.71
SP67	CONDUIT	3.54	0	11:54	3.47	0.47	0.72
SP68	CONDUIT	3.24	0	11:54	2.78	0.43	0.71
SP69	CONDUIT	3.16	0	11:54	3.04	0.42	0.60
SP7	CONDUIT	2.10	0	11:54	3.86	0.22	0.35
SP70	CONDUIT	0.22	0	11:52	2.82	0.04	0.39
SP71	CONDUIT	0.37	0	11:51	2.55	0.11	0.52

SP72	CONDUIT	0.26	0	11:53	2.08	0.08	0.29
SP73	CONDUIT	3.70	0	11:55	3.21	0.58	0.77
SP74	CONDUIT	3.47	0	11:55	2.81	0.54	0.73
SP75	CONDUIT	0.38	0	11:54	3.37	0.06	0.45
SP76	CONDUIT	0.40	0	11:54	3.48	0.07	0.26
SP77	CONDUIT	3.05	0	11:54	2.65	0.31	0.66
SP78	CONDUIT	2.90	0	11:54	2.60	0.45	0.63
SP79	CONDUIT	2.95	0	11:54	2.74	0.46	0.61
SP8	CONDUIT	1.29	0	11:54	2.72	0.13	0.31
SP80	CONDUIT	1.77	0	11:54	4.04	0.47	0.69
SP81	CONDUIT	1.78	0	11:54	3.91	0.48	0.56
SP82	CONDUIT	1.04	0	11:54	1.34	0.16	0.49
SP83	CONDUIT	1.07	0	11:54	1.59	0.17	0.45
SP85	CONDUIT	1.70	0	11:54	1.93	0.27	0.54
SP9	CONDUIT	0.55	0	11:54	3.79	0.12	0.24

Flow Classification Summary

		Adjusted		Fraction of Time in Flow Class						
		/Actual		Up	Down	Sub	Sup	Up	Down	Norm
Inlet	Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd
C1	0.00	1.00	0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.00
C2	0.00	1.00	0.00	0.00	0.00	0.15	0.00	0.00	0.85	0.00
C3	0.00	1.00	0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.00
C4	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C5	0.00	1.00	0.00	0.00	0.00	0.15	0.00	0.00	0.85	0.00
C6	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SP1	0.00	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.89	0.02
SP10	0.00	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.02
SP11	0.00	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.04
SP12	0.00	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.02
SP13	0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.05
SP14	0.00	1.00	0.00	0.06	0.00	0.94	0.00	0.00	0.00	1.00
SP15	0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.05
SP16	0.00	1.00	0.00	0.08	0.00	0.92	0.00	0.00	0.00	0.66

Paisley Park Subdivision 10-year, 24-hour PCSWMM Results

SP17 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
SP18 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.00	0.93
SP19 0.00	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.02	
SP2 0.00	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.05	
SP20 0.00	1.00	0.00	0.19	0.00	0.81	0.00	0.00	0.00	0.00	0.92
SP21 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP22 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP23 0.00	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.02	
SP24 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP25 0.00	1.00	0.00	0.00	0.00	0.92	0.08	0.00	0.00	1.00	
SP26 0.00	1.00	0.00	0.12	0.00	0.88	0.00	0.00	0.00	0.00	0.94
SP27 0.00	1.00	0.00	0.00	0.00	0.74	0.26	0.00	0.00	0.00	0.43
SP28 0.00	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.89	0.00	
SP29 0.00	1.00	0.00	0.04	0.00	0.95	0.01	0.00	0.00	0.00	0.74
SP3 0.00	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.93	0.04	
SP30 0.00	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.06	
SP31 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP32 0.00	1.00	0.00	0.00	0.00	0.70	0.30	0.00	0.00	0.00	0.99
SP33 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP34 0.00	1.00	0.00	0.00	0.00	0.69	0.31	0.00	0.00	0.00	0.99
SP35 0.00	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.04	
SP36 0.00	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	0.00	0.99
SP37 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP38 0.00	1.00	0.00	0.00	0.00	0.70	0.30	0.00	0.00	0.00	1.00
SP39 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
SP4 0.00	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01	
SP40 0.00	1.00	0.00	0.10	0.00	0.90	0.00	0.00	0.00	0.00	0.90
SP41 0.00	1.00	0.00	0.00	0.00	0.69	0.31	0.00	0.00	0.00	0.12
SP42 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	
SP43 0.00	1.00	0.00	0.00	0.00	0.88	0.12	0.00	0.00	0.00	1.00

Paisley Park Subdivision 10-year, 24-hour PCSWMM Results

SP44 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP45 0.00	1.00	0.00	0.00	0.00	0.68	0.32	0.00	0.00	0.00	0.99
SP46 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.04	
SP47 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP48 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.00	0.94
SP49 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.40
SP5 0.00	1.00	0.00	0.28	0.00	0.72	0.00	0.00	0.00	0.00	0.93
SP50 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP51 0.00	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	0.00	1.00
SP52 0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
SP53 0.00	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.00	0.57
SP54 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.19
SP55 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.75
SP56 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.54
SP57 0.00	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.90	0.01
SP58 0.00	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.92	0.02
SP59 0.00	1.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.89	0.00
SP6 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.16
SP60 0.00	1.00	0.00	0.12	0.00	0.88	0.00	0.00	0.00	0.00	0.69
SP61 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.34
SP62 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.55
SP63 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.36
SP64 0.00	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.02	
SP65 0.00	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.90	0.01	
SP66 0.00	1.00	0.00	0.00	0.00	0.10	0.00	0.00	0.89	0.01	
SP67 0.00	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.00	
SP68 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.00	0.70
SP69 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.50
SP7 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.95	0.01	
SP70 0.00	1.00	0.00	0.00	0.00	0.01	0.00	0.99	0.00	0.01	

**Paisley Park Subdivision
10-year, 24-hour PCSWMM Results**

SP71	1.00	0.00	0.00	0.00	0.04	0.00	0.00	0.96	0.04
0.00									
SP72	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.99
0.00									
SP73	1.00	0.00	0.00	0.00	0.08	0.00	0.00	0.92	0.00
0.00									
SP74	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.90
0.00									
SP75	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00
0.00									
SP76	1.00	0.00	0.00	0.00	0.66	0.34	0.00	0.00	0.77
0.00									
SP77	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.43
0.00									
SP78	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.51
0.00									
SP79	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.24
0.00									
SP8	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	1.00
0.00									
SP80	1.00	0.00	0.00	0.00	0.07	0.00	0.00	0.92	0.01
0.00									
SP81	1.00	0.00	0.00	0.00	0.75	0.25	0.00	0.00	0.98
0.00									
SP82	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.91
0.00									
SP83	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.10
0.00									
SP85	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.99
0.00									
SP9	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00									

Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Wed May 28 10:39:53 2025

Analysis ended on: Wed May 28 10:40:12 2025

Total elapsed time: 00:00:19

APPENDIX C

100-year, 24-hour Event PCSWMM Output Report

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

Element Count

Number of rain gages 3
Number of subcatchments ... 76
Number of nodes 93
Number of links 90
Number of pollutants 0
Number of land uses 0

Raingage Summary

Name	Data Source	Data Type	Recording Interval
100yr24hr	100yr24hr	INTENSITY	6 min.
10yr24hr	SCS_Type_II_1.66in	INTENSITY	6 min.
2yr24hr	2yr24hr	INTENSITY	6 min.

Subcatchment Summary

Name Outlet	Area	Width	%Imperv	%Slope	Rain Gage
1 CB9	0.76	95.36	80.00	2.0000	100yr24hr
10 CB33	0.19	46.66	72.00	2.0000	100yr24hr
11 CB5	1.57	196.00	65.00	2.0000	100yr24hr
12 CB1	0.92	160.00	9.00	2.0000	100yr24hr
13 CB1	1.29	190.50	67.00	2.0000	100yr24hr
14 CB14	0.17	50.30	75.00	2.0000	100yr24hr
15 CB15	0.18	53.40	75.00	2.0000	100yr24hr
16 CB13	0.06	38.30	75.00	2.0000	100yr24hr
17 CB16	0.06	38.30	75.00	2.0000	100yr24hr
18 CB11	0.22	60.00	75.00	2.0000	100yr24hr
19 CB12	0.22	60.00	75.00	2.0000	100yr24hr
2 CB4	0.97	127.73	71.00	2.0000	100yr24hr

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

20	0.09	36.60	75.00	2.0000	100yr24hr
CB26					
21	0.09	36.60	75.00	2.0000	100yr24hr
CB27					
22	0.41	65.30	73.00	2.0000	100yr24hr
CB18					
23	0.73	183.60	63.00	2.0000	100yr24hr
OFTrail					
24	1.22	183.00	66.00	2.0000	100yr24hr
CB84					
25	1.65	192.00	69.00	2.0000	100yr24hr
OFTrail					
26	2.77	228.00	59.00	2.0000	100yr24hr
CB999					
27	0.53	77.00	66.00	2.0000	100yr24hr
CB56					
28	0.61	103.00	73.00	2.0000	100yr24hr
CB36					
29	0.31	54.00	72.00	2.0000	100yr24hr
CB35					
3	0.35	124.00	52.00	2.0000	100yr24hr
CB2					
30	0.22	56.00	72.00	2.0000	100yr24hr
CB31					
31	0.67	114.00	43.00	2.0000	100yr24hr
CB19					
32	0.54	103.00	72.00	2.0000	100yr24hr
CB40					
33	0.19	67.00	59.00	2.0000	100yr24hr
CB39					
34	0.18	54.00	61.00	2.0000	100yr24hr
CB38					
35	0.21	57.30	64.00	2.0000	100yr24hr
CB41					
36	0.07	33.00	73.00	2.0000	100yr24hr
CB42					
37	0.33	87.00	73.00	2.0000	100yr24hr
CB46					
38	0.12	37.00	73.00	2.0000	100yr24hr
CB44					
39	0.69	101.00	85.00	2.0000	100yr24hr
CB47					
4	0.25	100.75	72.00	2.0000	100yr24hr
CB3					
40	0.19	53.00	80.00	2.0000	100yr24hr
CB45					
41	0.98	120.00	67.00	2.0000	100yr24hr
CB31					
42	1.81	168.00	49.00	2.0000	100yr24hr
CB19					
43	0.75	142.50	57.00	2.0000	100yr24hr
CB22					
44	0.70	135.00	63.00	2.0000	100yr24hr
CB21					
45	1.27	245.00	76.00	2.0000	100yr24hr
CB23					
46	0.55	100.00	84.00	2.0000	100yr24hr
CB24					
47	0.31	42.00	75.00	2.0000	100yr24hr
CB28					

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

48	0.31	42.00	75.00	2.0000	100yr24hr
CB29					
49	0.18	60.40	75.00	2.0000	100yr24hr
CB50					
5	0.20	60.22	61.00	2.0000	100yr24hr
CB8					
50	0.18	60.40	75.00	2.0000	100yr24hr
CB49					
51	0.09	39.30	75.00	2.0000	100yr24hr
CB51					
52	0.09	39.30	75.00	2.0000	100yr24hr
CB54					
53	0.26	60.80	79.00	2.0000	100yr24hr
CB52					
54	0.19	46.00	75.00	2.0000	100yr24hr
CB53					
55	0.17	35.30	75.00	2.0000	100yr24hr
CB57					
56	0.10	33.50	75.00	2.0000	100yr24hr
CB62					
57	1.54	151.00	66.00	2.0000	100yr24hr
CB67					
58	2.24	224.00	44.00	2.0000	100yr24hr
CB68					
59	0.34	50.50	73.00	2.0000	100yr24hr
CB65					
6	0.25	65.00	57.00	2.0000	100yr24hr
CB7					
60	0.59	130.00	72.00	2.0000	100yr24hr
CB66					
61	0.39	99.00	68.00	2.0000	100yr24hr
CB69					
62	0.13	50.20	74.00	2.0000	100yr24hr
CB73					
63	0.20	48.00	81.00	2.0000	100yr24hr
CB70					
64	0.16	54.70	72.00	2.0000	100yr24hr
CB75					
65	0.09	63.80	53.00	2.0000	100yr24hr
CB74					
66	0.10	70.30	51.00	2.0000	100yr24hr
CB60					
67	0.17	54.90	83.00	2.0000	100yr24hr
CB76					
68	0.07	32.00	78.00	2.0000	100yr24hr
CB77					
69	1.20	174.00	82.00	2.0000	100yr24hr
CB61					
7	0.36	65.00	67.00	2.0000	100yr24hr
CB10					
70	0.10	36.90	80.00	2.0000	100yr24hr
CB80					
71	0.22	65.10	81.00	2.0000	100yr24hr
CB79					
72	0.54	57.40	88.00	2.0000	100yr24hr
CB82					
73	0.18	94.40	75.00	2.0000	100yr24hr
CB82					
74	1.78	240.00	84.00	2.0000	100yr24hr
CB72					

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

75	0.64	150.00	75.00	2.0000	100yr24hr
CB86					
76	0.93	500.00	80.00	2.0000	100yr24hr
CB88					
8	0.43	78.38	62.00	2.0000	100yr24hr
CB6					
9	0.32	79.00	73.00	2.0000	100yr24hr
CB34					

Node Summary

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
<hr/>					
CB1	JUNCTION	3146.59	5.13	50.0	
CB10	JUNCTION	3149.24	3.66	50.0	
CB11	JUNCTION	3147.29	5.92	50.0	
CB12	JUNCTION	3148.24	4.99	50.0	
CB13	JUNCTION	3147.90	5.36	50.0	
CB14	JUNCTION	3148.81	3.73	50.0	
CB15	JUNCTION	3149.25	3.30	50.0	
CB16	JUNCTION	3148.85	4.43	50.0	
CB17	JUNCTION	3146.54	4.96	50.0	
CB18	JUNCTION	3146.61	4.97	50.0	
CB19	JUNCTION	3146.64	5.55	50.0	
CB2	JUNCTION	3147.51	3.97	50.0	
CB20	JUNCTION	3147.72	6.64	50.0	
CB21	JUNCTION	3148.28	4.77	50.0	
CB22	JUNCTION	3148.45	4.63	50.0	
CB23	JUNCTION	3148.86	3.93	50.0	
CB24	JUNCTION	3150.97	3.97	50.0	
CB25	JUNCTION	3148.05	4.65	50.0	
CB26	JUNCTION	3148.83	4.37	50.0	
CB27	JUNCTION	3149.79	3.41	50.0	
CB28	JUNCTION	3148.21	5.05	50.0	
CB29	JUNCTION	3149.16	4.10	50.0	
CB3	JUNCTION	3148.41	3.19	50.0	
CB30	JUNCTION	3147.24	4.32	50.0	
CB31	JUNCTION	3147.69	5.11	50.0	
CB32	JUNCTION	3148.63	4.49	50.0	
CB33	JUNCTION	3149.17	4.39	50.0	
CB34	JUNCTION	3149.68	4.02	50.0	
CB35	JUNCTION	3149.01	4.79	50.0	
CB36	JUNCTION	3149.50	4.47	50.0	
CB37	JUNCTION	3149.50	5.39	50.0	
CB38	JUNCTION	3149.80	5.20	50.0	
CB39	JUNCTION	3150.48	4.68	50.0	
CB4	JUNCTION	3148.28	3.22	50.0	
CB40	JUNCTION	3151.68	2.25	50.0	
CB41	JUNCTION	3151.67	3.36	50.0	
CB42	JUNCTION	3149.63	5.33	50.0	
CB43	JUNCTION	3150.51	3.77	50.0	
CB44	JUNCTION	3150.86	3.91	50.0	
CB45	JUNCTION	3151.25	3.58	50.0	
CB46	JUNCTION	3151.13	3.74	50.0	

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB47	JUNCTION	3151.52	3.53	50.0
CB48	JUNCTION	3148.74	6.03	50.0
CB49	JUNCTION	3149.89	4.81	50.0
CB5	JUNCTION	3147.08	4.16	50.0
CB50	JUNCTION	3148.84	5.89	50.0
CB51	JUNCTION	3149.42	4.24	50.0
CB52	JUNCTION	3149.83	3.83	50.0
CB53	JUNCTION	3150.76	2.91	50.0
CB54	JUNCTION	3150.13	3.49	50.0
CB55	JUNCTION	3147.44	5.15	50.0
CB56	JUNCTION	3147.47	4.78	50.0
CB57	JUNCTION	3147.51	4.82	50.0
CB58	JUNCTION	3147.68	4.88	50.0
CB59	JUNCTION	3147.92	5.62	50.0
CB6	JUNCTION	3147.78	4.92	50.0
CB60	JUNCTION	3148.71	4.04	50.0
CB61	JUNCTION	3149.22	4.09	50.0
CB62	JUNCTION	3148.45	4.41	0.0
CB63	JUNCTION	3148.55	3.47	0.0
CB64	JUNCTION	3148.82	3.46	0.0
CB65	JUNCTION	3148.92	4.08	0.0
CB66	JUNCTION	3149.03	4.00	0.0
CB67	JUNCTION	3148.80	3.43	50.0
CB68	JUNCTION	3148.67	3.59	50.0
CB69	JUNCTION	3148.68	5.36	50.0
CB7	JUNCTION	3147.90	4.86	50.0
CB70	JUNCTION	3149.05	5.11	50.0
CB71	JUNCTION	3149.18	4.99	50.0
CB72	JUNCTION	3149.74	4.13	50.0
CB73	JUNCTION	3150.01	4.28	50.0
CB74	JUNCTION	3149.77	3.18	50.0
CB75	JUNCTION	3149.96	3.11	50.0
CB76	JUNCTION	3149.06	3.94	50.0
CB77	JUNCTION	3149.32	4.27	0.0
CB78	JUNCTION	3150.01	4.40	50.0
CB79	JUNCTION	3150.70	3.80	50.0
CB8	JUNCTION	3148.36	4.58	50.0
CB80	JUNCTION	3149.49	3.81	0.0
CB81	JUNCTION	3149.55	4.48	0.0
CB82	JUNCTION	3149.86	2.95	0.0
CB83	JUNCTION	3149.09	3.62	50.0
CB84	JUNCTION	3149.80	3.06	50.0
CB85	JUNCTION	3149.12	3.13	0.0
CB86	JUNCTION	3149.20	2.88	0.0
CB88	JUNCTION	3150.10	3.00	0.0
CB9	JUNCTION	3148.90	3.65	50.0
CB999	JUNCTION	3147.44	6.00	50.0
OF_North	OUTFALL	3150.50	0.25	0.0
OF_South	OUTFALL	3150.50	0.50	0.0
OFTrail	OUTFALL	0.00	0.00	0.0
CMPNorth	STORAGE	3146.85	5.25	0.0
CMPSouth	STORAGE	3146.00	5.50	0.0

Link Summary

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

Name	From Node	To Node	Type	Length	%
Slope	Roughness				
<hr/>					
C1	CB1	CMPSouth	CONDUIT	20.0	
0.4700	0.0100				
C2	CB999	CMPNorth	CONDUIT	10.0	
0.9100	0.0100				
C3	CB17	CMPSouth	CONDUIT	20.0	
0.2000	0.0100				
C4	CMPSouth	OF_South	CONDUIT	30.2	
1.6574	0.0100				
C5	CB55	CMPNorth	CONDUIT	20.7	
0.4406	0.0100				
C6	CMPNorth	OF_North	CONDUIT	18.8	
7.1875	0.0100				
SP1	CB2	CB1	CONDUIT	279.5	
0.1499	0.0100				
SP10	CB11	CB1	CONDUIT	202.0	
0.2198	0.0100				
SP11	CB12	CB11	CONDUIT	45.6	
1.5489	0.0100				
SP12	CB13	CB11	CONDUIT	120.4	
0.2999	0.0100				
SP13	CB14	CB13	CONDUIT	132.4	
0.5001	0.0100				
SP14	CB15	CB14	CONDUIT	44.3	
1.0001	0.0100				
SP15	CB16	CB13	CONDUIT	45.3	
1.5524	0.0100				
SP16	CB18	CB17	CONDUIT	20.0	
0.3750	0.0100				
SP17	CB19	CB18	CONDUIT	21.3	
0.1078	0.0100				
SP18	CB20	CB19	CONDUIT	359.5	
0.2999	0.0100				
SP19	CB21	CB20	CONDUIT	171.9	
0.1798	0.0100				
SP2	CB3	CB2	CONDUIT	124.6	
0.5218	0.0100				
SP20	CB22	CB21	CONDUIT	34.0	
0.4993	0.0100				
SP21	CB23	CB22	CONDUIT	16.2	
1.0007	0.0100				
SP22	CB24	CB23	CONDUIT	186.6	
0.9992	0.0100				
SP23	CB25	CB18	CONDUIT	199.5	
0.2201	0.0100				
SP24	CB26	CB25	CONDUIT	27.2	
0.9992	0.0100				
SP25	CB27	CB26	CONDUIT	48.4	
1.9989	0.0100				
SP26	CB28	CB25	CONDUIT	15.2	
0.9989	0.0100				
SP27	CB29	CB28	CONDUIT	47.8	
1.9989	0.0100				
SP28	CB30	CB19	CONDUIT	26.6	
0.4015	0.0100				
SP29	CB31	CB30	CONDUIT	110.6	
0.3996	0.0100				

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP3		CB4	CB2	CONDUIT	135.6
0.3835	0.0100	CB32	CB31	CONDUIT	139.3
SP30		CB33	CB32	CONDUIT	29.1
0.4990	0.0100	CB34	CB33	CONDUIT	50.6
SP31		CB35	CB32	CONDUIT	12.8
1.0003	0.0100	CB36	CB35	CONDUIT	49.1
SP32		CB37	CB20	CONDUIT	257.6
0.9990	0.0100	CB38	CB37	CONDUIT	30.3
SP33		CB39	CB38	CONDUIT	42.5
1.0027	0.0100	CB40	CB39	CONDUIT	120.5
SP34		CB41	CB39	CONDUIT	29.9
0.9998	0.0100	CB5	CB1	CONDUIT	108.3
SP35		CB42	CB37	CONDUIT	21.5
0.4997	0.0100	CB43	CB42	CONDUIT	146.1
SP36		CB44	CB43	CONDUIT	9.8
0.9982	0.0100	CB45	CB44	CONDUIT	39.5
SP37		CB46	CB43	CONDUIT	37.1
0.9995	0.0100	CB47	CB46	CONDUIT	39.5
SP38		CB48	CB20	CONDUIT	211.7
0.9992	0.0100	CB49	CB48	CONDUIT	45.1
SP39		CB50	CB48	CONDUIT	24.2
4.0008	0.0100	CB51	CB50	CONDUIT	144.0
SP4		CB6	CB5	CONDUIT	174.0
0.2198	0.0100	CB52	CB51	CONDUIT	40.3
SP40		CB53	CB52	CONDUIT	46.6
0.5986	0.0100	CB54	CB51	CONDUIT	46.4
SP41		CB55	CB55	CONDUIT	24.0
0.5997	0.0100	CB56	CB56	CONDUIT	34.8
SP42		CB57	CB56	CONDUIT	157.6
0.9957	0.0100	CB58	CB57	CONDUIT	214.7
SP43		CB59	CB58	CONDUIT	
0.9985	0.0100				
SP44					
0.9994	0.0100				
SP45					
1.0006	0.0100				
SP46					
0.2499	0.0100				
SP47					
1.9979	0.0100				
SP48					
0.4008	0.0100				
SP49					
0.3999	0.0100				
SP5					
0.3999	0.0100				
SP50					
0.3998	0.0100				
SP51					
1.9990	0.0100				
SP52					
0.9991	0.0100				
SP53					
0.1165	0.0100				
SP54					
0.1094	0.0100				
SP55					
0.1098	0.0100				
SP56					
0.1099	0.0100				

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP57		CB60	CB59	CONDUIT	194.5
0.1502	0.0100	CB61	CB60	CONDUIT	26.0
SP58		CB62	CB57	CONDUIT	35.7
0.9996	0.0100	CB7	CB6	CONDUIT	30.1
SP59		CB63	CB62	CONDUIT	30.8
0.3021	0.0100	CB64	CB63	CONDUIT	67.8
SP6		CB65	CB64	CONDUIT	47.0
0.3988	0.0100	CB66	CB65	CONDUIT	51.0
SP60		CB67	CB58	CONDUIT	60.7
0.2987	0.0100	CB68	CB58	CONDUIT	33.4
SP61		CB69	CB59	CONDUIT	173.6
0.3994	0.0100	CB70	CB69	CONDUIT	41.4
SP62		CB71	CB70	CONDUIT	42.2
0.2192	0.0100	CB72	CB71	CONDUIT	187.5
SP63		CB8	CB7	CONDUIT	41.9
0.2197	0.0100	CB73	CB71	CONDUIT	22.6
SP64		CB74	CB60	CONDUIT	63.3
0.4990	0.0100	CB75	CB74	CONDUIT	37.4
SP65		CB76	CB60	CONDUIT	44.7
0.5003	0.0100	CB77	CB76	CONDUIT	119.5
SP66		CB78	CB77	CONDUIT	11.1
0.1498	0.0100	CB79	CB78	CONDUIT	45.7
SP67		CB80	CB77	CONDUIT	33.3
0.2992	0.0100	CB81	CB80	CONDUIT	26.6
SP68		CB82	CB81	CONDUIT	147.0
0.2988	0.0100	CB9	CB8	CONDUIT	108.4
SP69		CB83	CB55	CONDUIT	23.5
0.2997	0.0100	CB84	CB83	CONDUIT	109.4
SP7		CB85	CB66	CONDUIT	38.9
0.5007	0.0100	CB86	CB85	CONDUIT	35.8
SP70					
1.4973	0.0100				
SP71					
0.4993	0.0100				
SP72					
0.5001	0.0100				
SP73					
0.2191	0.0100				
SP74					
0.2175	0.0100				
SP75					
1.7438	0.0100				
SP76					
1.4999	0.0100				
SP77					
0.5161	0.0100				
SP78					
0.2181	0.0100				
SP79					
0.2163	0.0100				
SP8					
0.5001	0.0100				
SP80					
0.6506	0.0100				
SP81					
0.6500	0.0100				
SP82					
0.2208	0.0100				
SP83					
0.2205	0.0100				

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP85 0.2194	0.0100	CB88	CB82	CONDUIT	108.5
SP9 0.9989	0.0100	CB10	CB8	CONDUIT	38.3

Cross Section Summary

Full Conduit Flow	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels
-----	-----	-----	-----	-----	-----	-----
C1 36.56	CIRCULAR	2.50	4.91	0.62	2.50	1
C2 50.87	CIRCULAR	2.50	4.91	0.62	2.50	1
C3 23.85	CIRCULAR	2.50	4.91	0.62	2.50	1
C4 297.34	RECT_OPEN	0.50	25.00	0.49	50.00	1
C5 35.39	CIRCULAR	2.50	4.91	0.62	2.50	1
C6 196.32	RECT_OPEN	0.25	12.50	0.25	50.00	1
SP1 11.39	CIRCULAR	2.00	3.14	0.50	2.00	1
SP10 13.79	CIRCULAR	2.00	3.14	0.50	2.00	1
SP11 17.00	CIRCULAR	1.50	1.77	0.38	1.50	1
SP12 7.48	CIRCULAR	1.50	1.77	0.38	1.50	1
SP13 3.28	CIRCULAR	1.00	0.79	0.25	1.00	1
SP14 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP15 5.77	CIRCULAR	1.00	0.79	0.25	1.00	1
SP16 32.65	CIRCULAR	2.50	4.91	0.62	2.50	1
SP17 17.51	CIRCULAR	2.50	4.91	0.62	2.50	1
SP18 29.20	CIRCULAR	2.50	4.91	0.62	2.50	1
SP19 12.47	CIRCULAR	2.00	3.14	0.50	2.00	1
SP2 9.86	CIRCULAR	1.50	1.77	0.38	1.50	1
SP20 20.78	CIRCULAR	2.00	3.14	0.50	2.00	1
SP21 13.66	CIRCULAR	1.50	1.77	0.38	1.50	1
SP22 4.63	CIRCULAR	1.00	0.79	0.25	1.00	1
SP23 6.41	CIRCULAR	1.50	1.77	0.38	1.50	1
SP24	CIRCULAR	1.00	0.79	0.25	1.00	1

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP25	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP26	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP27	CIRCULAR	1.50	1.77	0.38	1.50	1
19.31						
SP28	CIRCULAR	2.00	3.14	0.50	2.00	1
18.64						
SP29	CIRCULAR	2.00	3.14	0.50	2.00	1
18.59						
SP3	CIRCULAR	1.50	1.77	0.38	1.50	1
8.46						
SP30	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP31	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP32	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP33	CIRCULAR	1.00	0.79	0.25	1.00	1
4.64						
SP34	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP35	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP36	CIRCULAR	1.50	1.77	0.38	1.50	1
13.64						
SP37	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP38	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP39	CIRCULAR	1.00	0.79	0.25	1.00	1
9.26						
SP4	CIRCULAR	2.00	3.14	0.50	2.00	1
13.79						
SP40	CIRCULAR	1.50	1.77	0.38	1.50	1
10.57						
SP41	CIRCULAR	1.50	1.77	0.38	1.50	1
10.58						
SP42	CIRCULAR	1.00	0.79	0.25	1.00	1
4.62						
SP43	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP44	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP45	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP46	CIRCULAR	1.50	1.77	0.38	1.50	1
6.83						
SP47	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						
SP48	CIRCULAR	1.50	1.77	0.38	1.50	1
8.65						
SP49	CIRCULAR	1.50	1.77	0.38	1.50	1
8.64						
SP5	CIRCULAR	2.00	3.14	0.50	2.00	1
18.60						
SP50	CIRCULAR	1.00	0.79	0.25	1.00	1
2.93						
SP51	CIRCULAR	1.00	0.79	0.25	1.00	1
6.55						

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP52	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						
SP53	CIRCULAR	2.50	4.91	0.62	2.50	1
18.20						
SP54	CIRCULAR	2.50	4.91	0.62	2.50	1
17.63						
SP55	CIRCULAR	2.50	4.91	0.62	2.50	1
17.67						
SP56	CIRCULAR	2.50	4.91	0.62	2.50	1
17.68						
SP57	CIRCULAR	2.00	3.14	0.50	2.00	1
11.40						
SP58	CIRCULAR	1.50	1.77	0.38	1.50	1
13.65						
SP59	CIRCULAR	1.50	1.77	0.38	1.50	1
7.51						
SP6	CIRCULAR	2.00	3.14	0.50	2.00	1
18.57						
SP60	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP61	CIRCULAR	1.50	1.77	0.38	1.50	1
8.63						
SP62	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP63	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP64	CIRCULAR	1.50	1.77	0.38	1.50	1
9.65						
SP65	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP66	CIRCULAR	2.00	3.14	0.50	2.00	1
11.38						
SP67	CIRCULAR	1.50	1.77	0.38	1.50	1
7.47						
SP68	CIRCULAR	1.50	1.77	0.38	1.50	1
7.46						
SP69	CIRCULAR	1.50	1.77	0.38	1.50	1
7.48						
SP7	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP70	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP71	CIRCULAR	1.00	0.79	0.25	1.00	1
3.27						
SP72	CIRCULAR	1.00	0.79	0.25	1.00	1
3.28						
SP73	CIRCULAR	1.50	1.77	0.38	1.50	1
6.39						
SP74	CIRCULAR	1.50	1.77	0.38	1.50	1
6.37						
SP75	CIRCULAR	1.00	0.79	0.25	1.00	1
6.12						
SP76	CIRCULAR	1.00	0.79	0.25	1.00	1
5.67						
SP77	CIRCULAR	1.50	1.77	0.38	1.50	1
9.81						
SP78	CIRCULAR	1.50	1.77	0.38	1.50	1
6.38						
SP79	CIRCULAR	1.50	1.77	0.38	1.50	1
6.35						

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP8	CIRCULAR	1.50	1.77	0.38	1.50	1
9.66						
SP80	CIRCULAR	1.00	0.79	0.25	1.00	1
3.74						
SP81	CIRCULAR	1.00	0.79	0.25	1.00	1
3.73						
SP82	CIRCULAR	1.50	1.77	0.38	1.50	1
6.42						
SP83	CIRCULAR	1.50	1.77	0.38	1.50	1
6.41						
SP85	CIRCULAR	1.50	1.77	0.38	1.50	1
6.40						
SP9	CIRCULAR	1.00	0.79	0.25	1.00	1
4.63						

Analysis Options

Flow Units CFS

Process Models:

Rainfall/Runoff	YES
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	YES
Water Quality	NO
Infiltration Method	HORTON
Flow Routing Method	DYNWAVE
Surcharge Method	EXTRAN
Starting Date	01/27/2025 00:00:00
Ending Date	01/30/2025 00:00:00
Antecedent Dry Days	0.0
Report Time Step	00:00:02
Wet Time Step	00:00:30
Dry Time Step	00:05:00
Routing Time Step	2.00 sec
Variable Time Step	NO
Maximum Trials	16
Number of Threads	8
Head Tolerance	0.000500 ft

Runoff Quantity Continuity	Volume acre-feet	Depth inches
-----	-----	-----
Total Precipitation	7.615	2.280
Evaporation Loss	0.000	0.000
Infiltration Loss	2.404	0.720
Surface Runoff	5.157	1.544
Final Storage	0.055	0.016
Continuity Error (%)	-0.005	

Flow Routing Continuity	Volume acre-feet	Volume 10^6 gal
-----	-----	-----

Paisley Park Subdivision 100-year, 24-hour PCSWMM Results

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	5.157	1.680
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.492	0.160
Flooding Loss	0.001	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	4.685	1.527
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.388	

```
*****  
Highest Flow Instability Indexes  
*****  
Link C2 (6)  
Link SP53 (1)  
Link C1 (1)  
Link C5 (1)
```

```
*****  
Most Frequent Nonconverging Nodes  
*****  
Node OF_North (0.31%)  
Node OF_South (0.31%)  
Node OFTrail (0.31%)  
Node CB76 (0.15%)  
Node CB74 (0.15%)
```

```
*****
Routing Time Step Summary
*****
Minimum Time Step      : 2.00 sec
Average Time Step       : 2.00 sec
Maximum Time Step       : 2.00 sec
% of Time in Steady State : 0.00
Average Iterations per Step : 2.15
% of Steps Not Converging : 0.31
```

Subcatchment Runoff Summary

Perv	Total	Total	Total	Total	Total	Total	Imperc
Runoff	Runoff	Precip	Runoff	Runon	Evap	Infil	Runoff
Subcatchment	in	in	in	in	in	in	in
in	in	10^6 gal	CFS				

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

			2.28	0.00	0.00	0.42	1.84
1							
0.03	1.84	0.04	1.86	0.805			
10			2.28	0.00	0.00	0.59	1.67
0.05	1.67	0.01	0.45	0.734			
11			2.28	0.00	0.00	0.76	1.51
0.04	1.51	0.06	3.20	0.662			
12			2.28	0.00	0.00	2.00	0.20
0.08	0.28	0.01	0.50	0.122			
13			2.28	0.00	0.00	0.71	1.56
0.04	1.56	0.05	2.75	0.682			
14			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.44	0.763			
15			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.46	0.764			
16			2.28	0.00	0.00	0.51	1.75
0.06	1.75	0.00	0.15	0.768			
17			2.28	0.00	0.00	0.51	1.75
0.06	1.75	0.00	0.15	0.768			
18			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.54	0.763			
19			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.54	0.763			
2			2.28	0.00	0.00	0.62	1.64
0.04	1.64	0.04	2.15	0.720			
20			2.28	0.00	0.00	0.52	1.75
0.05	1.75	0.00	0.22	0.766			
21			2.28	0.00	0.00	0.52	1.75
0.05	1.75	0.00	0.22	0.766			
22			2.28	0.00	0.00	0.57	1.65
0.04	1.69	0.02	0.99	0.740			
23			2.28	0.00	0.00	0.78	1.48
0.06	1.48	0.03	1.54	0.650			
24			2.28	0.00	0.00	0.73	1.53
0.05	1.53	0.05	2.57	0.673			
25			2.28	0.00	0.00	0.67	1.59
0.04	1.59	0.07	3.53	0.699			
26			2.28	0.00	0.00	0.90	1.37
0.04	1.37	0.10	4.96	0.599			
27			2.28	0.00	0.00	0.73	1.53
0.04	1.53	0.02	1.12	0.673			
28			2.28	0.00	0.00	0.57	1.69
0.04	1.69	0.03	1.42	0.741			
29			2.28	0.00	0.00	0.59	1.62
0.04	1.67	0.01	0.73	0.732			
3			2.28	0.00	0.00	1.01	1.25
0.08	1.25	0.01	0.65	0.550			
30			2.28	0.00	0.00	0.59	1.68
0.05	1.68	0.01	0.52	0.735			
31			2.28	0.00	0.00	1.24	1.03
0.06	1.03	0.02	0.97	0.453			
32			2.28	0.00	0.00	0.59	1.67
0.05	1.67	0.02	1.27	0.732			
33			2.28	0.00	0.00	0.86	1.40
0.07	1.40	0.01	0.40	0.615			
34			2.28	0.00	0.00	0.82	1.44
0.07	1.44	0.01	0.37	0.633			
35			2.28	0.00	0.00	0.76	1.50
0.06	1.50	0.01	0.45	0.660			

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

36			2.28	0.00	0.00	0.56	1.71
0.06	1.71	0.00	0.19	0.748			
37			2.28	0.00	0.00	0.57	1.70
0.05	1.70	0.02	0.79	0.744			
38			2.28	0.00	0.00	0.56	1.70
0.05	1.70	0.01	0.29	0.745			
39			2.28	0.00	0.00	0.31	1.94
0.03	1.94	0.04	1.82	0.853			
4			2.28	0.00	0.00	0.58	1.68
0.06	1.68	0.01	0.61	0.738			
40			2.28	0.00	0.00	0.41	1.85
0.04	1.85	0.01	0.50	0.810			
41			2.28	0.00	0.00	0.71	1.55
0.04	1.55	0.04	2.04	0.681			
42			2.28	0.00	0.00	1.12	1.15
0.04	1.15	0.06	2.78	0.503			
43			2.28	0.00	0.00	0.92	1.34
0.06	1.34	0.03	1.41	0.589			
44			2.28	0.00	0.00	0.79	1.47
0.05	1.47	0.03	1.45	0.647			
45			2.28	0.00	0.00	0.51	1.76
0.04	1.76	0.06	3.09	0.770			
46			2.28	0.00	0.00	0.33	1.93
0.03	1.93	0.03	1.46	0.845			
47			2.28	0.00	0.00	0.53	1.73
0.04	1.73	0.01	0.73	0.758			
48			2.28	0.00	0.00	0.53	1.73
0.04	1.73	0.01	0.73	0.758			
49			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.45	0.765			
5			2.28	0.00	0.00	0.82	1.44
0.07	1.44	0.01	0.41	0.633			
50			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.45	0.765			
51			2.28	0.00	0.00	0.52	1.75
0.05	1.75	0.00	0.24	0.766			
52			2.28	0.00	0.00	0.52	1.75
0.05	1.75	0.00	0.24	0.766			
53			2.28	0.00	0.00	0.44	1.82
0.04	1.82	0.01	0.67	0.799			
54			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.01	0.47	0.762			
55			2.28	0.00	0.00	0.53	1.74
0.04	1.74	0.01	0.41	0.761			
56			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.00	0.25	0.764			
57			2.28	0.00	0.00	0.74	1.53
0.04	1.53	0.06	3.10	0.669			
58			2.28	0.00	0.00	1.23	1.04
0.04	1.04	0.06	3.15	0.455			
59			2.28	0.00	0.00	0.58	1.69
0.04	1.69	0.02	0.78	0.740			
6			2.28	0.00	0.00	0.91	1.35
0.07	1.35	0.01	0.49	0.593			
60			2.28	0.00	0.00	0.59	1.67
0.05	1.67	0.03	1.39	0.733			
61			2.28	0.00	0.00	0.67	1.59
0.06	1.59	0.02	0.88	0.697			
62			2.28	0.00	0.00	0.54	1.72
0.05	1.72	0.01	0.33	0.756			

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

63			2.28	0.00	0.00	0.39	1.87
0.04	1.87	0.01	0.52	0.818			
64			2.28	0.00	0.00	0.58	1.68
0.06	1.68	0.01	0.39	0.737			
65			2.28	0.00	0.00	0.97	1.29
0.10	1.29	0.00	0.19	0.568			
66			2.28	0.00	0.00	1.02	1.25
0.10	1.25	0.00	0.21	0.549			
67			2.28	0.00	0.00	0.35	1.91
0.04	1.91	0.01	0.46	0.838			
68			2.28	0.00	0.00	0.45	1.81
0.05	1.81	0.00	0.18	0.794			
69			2.28	0.00	0.00	0.38	1.88
0.03	1.88	0.06	3.05	0.825			
7			2.28	0.00	0.00	0.70	1.56
0.05	1.56	0.02	0.79	0.684			
70			2.28	0.00	0.00	0.41	1.85
0.04	1.85	0.00	0.27	0.811			
71			2.28	0.00	0.00	0.39	1.87
0.04	1.87	0.01	0.58	0.819			
72			2.28	0.00	0.00	0.25	2.01
0.02	2.01	0.03	1.41	0.880			
73			2.28	0.00	0.00	0.51	1.75
0.06	1.75	0.01	0.48	0.767			
74			2.28	0.00	0.00	0.34	1.92
0.03	1.92	0.09	4.59	0.843			
75			2.28	0.00	0.00	0.52	1.74
0.05	1.74	0.03	1.57	0.762			
76			2.28	0.00	0.00	0.41	1.85
0.05	1.85	0.05	2.56	0.812			
8			2.28	0.00	0.00	0.81	1.45
0.05	1.45	0.02	0.87	0.637			
9			2.28	0.00	0.00	0.57	1.70
0.05	1.70	0.01	0.76	0.744			

Node Depth Summary

Node	Type	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Time of Max Occurrence days hr:min	Reported Max Depth Feet
CB1	JUNCTION	0.79	4.42	3151.02	0 13:03	4.42
CB10	JUNCTION	0.18	1.78	3151.02	0 13:03	1.78
CB11	JUNCTION	0.59	3.73	3151.02	0 13:00	3.73
CB12	JUNCTION	0.36	2.77	3151.02	0 13:01	2.77
CB13	JUNCTION	0.44	3.12	3151.02	0 13:01	3.12
CB14	JUNCTION	0.26	2.21	3151.02	0 13:02	2.21
CB15	JUNCTION	0.18	1.76	3151.02	0 13:05	1.76
CB16	JUNCTION	0.24	2.17	3151.02	0 12:56	2.17
CB17	JUNCTION	0.82	4.48	3151.02	0 13:00	4.48
CB18	JUNCTION	0.80	4.41	3151.02	0 13:03	4.41
CB19	JUNCTION	0.80	4.38	3151.02	0 13:04	4.38
CB2	JUNCTION	0.54	3.51	3151.02	0 13:00	3.51
CB20	JUNCTION	0.51	3.31	3151.03	0 13:04	3.31
CB21	JUNCTION	0.38	2.75	3151.03	0 12:58	2.75

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB22	JUNCTION	0.34	2.58	3151.03	0	12:57	2.58
CB23	JUNCTION	0.26	2.17	3151.03	0	12:59	2.17
CB24	JUNCTION	0.02	0.39	3151.36	0	11:54	0.39
CB25	JUNCTION	0.42	2.97	3151.02	0	12:59	2.97
CB26	JUNCTION	0.25	2.19	3151.02	0	12:57	2.19
CB27	JUNCTION	0.10	1.23	3151.02	0	13:03	1.23
CB28	JUNCTION	0.38	2.82	3151.02	0	12:58	2.82
CB29	JUNCTION	0.19	1.86	3151.02	0	13:00	1.86
CB3	JUNCTION	0.33	2.61	3151.02	0	13:00	2.61
CB30	JUNCTION	0.61	3.78	3151.02	0	12:59	3.78
CB31	JUNCTION	0.50	3.33	3151.02	0	12:58	3.33
CB32	JUNCTION	0.30	2.39	3151.02	0	13:00	2.39
CB33	JUNCTION	0.20	1.85	3151.02	0	13:00	1.85
CB34	JUNCTION	0.12	1.34	3151.02	0	12:59	1.34
CB35	JUNCTION	0.23	2.02	3151.03	0	12:59	2.02
CB36	JUNCTION	0.14	1.52	3151.02	0	12:59	1.52
CB37	JUNCTION	0.16	1.54	3151.04	0	12:52	1.54
CB38	JUNCTION	0.11	1.23	3151.04	0	12:58	1.23
CB39	JUNCTION	0.05	0.59	3151.07	0	11:54	0.59
CB4	JUNCTION	0.36	2.74	3151.02	0	13:00	2.74
CB40	JUNCTION	0.02	0.36	3152.04	0	11:54	0.36
CB41	JUNCTION	0.01	0.15	3151.82	0	11:54	0.15
CB42	JUNCTION	0.14	1.41	3151.04	0	12:52	1.41
CB43	JUNCTION	0.05	0.66	3151.17	0	11:54	0.66
CB44	JUNCTION	0.02	0.43	3151.28	0	11:54	0.43
CB45	JUNCTION	0.01	0.23	3151.48	0	11:54	0.23
CB46	JUNCTION	0.03	0.68	3151.81	0	11:54	0.68
CB47	JUNCTION	0.02	0.54	3152.06	0	11:54	0.54
CB48	JUNCTION	0.28	2.29	3151.03	0	12:53	2.29
CB49	JUNCTION	0.09	1.14	3151.03	0	12:53	1.14
CB5	JUNCTION	0.65	3.94	3151.02	0	13:04	3.94
CB50	JUNCTION	0.26	2.19	3151.03	0	12:53	2.19
CB51	JUNCTION	0.16	1.62	3151.04	0	12:53	1.62
CB52	JUNCTION	0.11	1.21	3151.04	0	12:53	1.21
CB53	JUNCTION	0.02	0.28	3151.04	0	12:53	0.28
CB54	JUNCTION	0.07	0.91	3151.04	0	12:53	0.91
CB55	JUNCTION	0.82	4.45	3151.89	0	12:12	4.45
CB56	JUNCTION	0.82	4.43	3151.90	0	12:14	4.43
CB57	JUNCTION	0.81	4.40	3151.91	0	12:13	4.40
CB58	JUNCTION	0.76	4.26	3151.94	0	12:11	4.26
CB59	JUNCTION	0.70	4.07	3151.98	0	12:11	4.07
CB6	JUNCTION	0.48	3.24	3151.02	0	13:01	3.24
CB60	JUNCTION	0.50	3.34	3152.05	0	12:10	3.34
CB61	JUNCTION	0.37	2.83	3152.05	0	12:10	2.83
CB62	JUNCTION	0.54	3.46	3151.91	0	12:11	3.46
CB63	JUNCTION	0.52	3.37	3151.91	0	12:11	3.37
CB64	JUNCTION	0.46	3.10	3151.92	0	12:11	3.10
CB65	JUNCTION	0.44	3.00	3151.92	0	12:11	3.00
CB66	JUNCTION	0.41	2.90	3151.93	0	12:11	2.90
CB67	JUNCTION	0.46	3.14	3151.95	0	12:11	3.14
CB68	JUNCTION	0.49	3.28	3151.94	0	12:11	3.28
CB69	JUNCTION	0.50	3.32	3152.00	0	12:11	3.32
CB7	JUNCTION	0.45	3.12	3151.02	0	12:56	3.12
CB70	JUNCTION	0.41	3.18	3152.23	0	11:53	3.18
CB71	JUNCTION	0.39	3.33	3152.50	0	11:53	3.33
CB72	JUNCTION	0.27	4.13	3153.86	0	11:53	4.13
CB73	JUNCTION	0.21	2.54	3152.56	0	11:53	2.54

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB74	JUNCTION	0.26	2.28	3152.06	0	12:10	2.28
CB75	JUNCTION	0.22	2.57	3152.53	0	11:53	2.57
CB76	JUNCTION	0.41	3.04	3152.10	0	11:53	3.04
CB77	JUNCTION	0.36	3.18	3152.50	0	11:53	3.18
CB78	JUNCTION	0.21	2.51	3152.52	0	11:53	2.51
CB79	JUNCTION	0.11	2.17	3152.87	0	12:09	2.17
CB8	JUNCTION	0.35	2.66	3151.02	0	13:00	2.66
CB80	JUNCTION	0.32	3.11	3152.60	0	11:53	3.11
CB81	JUNCTION	0.31	3.10	3152.65	0	11:53	3.10
CB82	JUNCTION	0.25	2.95	3152.82	0	11:53	2.95
CB83	JUNCTION	0.39	2.81	3151.90	0	12:13	2.81
CB84	JUNCTION	0.25	2.10	3151.91	0	12:13	2.10
CB85	JUNCTION	0.39	2.89	3152.01	0	11:54	2.89
CB86	JUNCTION	0.37	2.86	3152.06	0	11:54	2.86
CB88	JUNCTION	0.21	3.00	3153.10	0	11:53	3.00
CB9	JUNCTION	0.24	2.12	3151.02	0	13:03	2.12
CB999	JUNCTION	0.79	4.44	3151.88	0	12:16	4.44
OF_North	OUTFALL	0.00	0.02	3150.52	0	12:13	0.02
OF_South	OUTFALL	0.00	0.01	3150.51	0	13:00	0.01
OFTrail	OUTFALL	0.00	0.00	0.00	0	00:00	0.00
CMPNorth	STORAGE	0.96	5.02	3151.87	0	12:13	5.02
CMPSouth	STORAGE	0.94	5.01	3151.01	0	13:00	5.01

Node Inflow Summary

Total Inflow Volume Node gal	Flow Balance Error Percent	Type	Maximum Lateral	Maximum Inflow	Lateral		Inflow Volume 10^6 gal	10^6
			Lateral	Total	Time of Max	Occurrence		
CB1 0.322	-0.272	JUNCTION	3.18	14.48	0	11:54	0.0614	
CB10 0.0154	0.046	JUNCTION	0.79	0.79	0	11:54	0.0154	
CB11 0.043	-0.401	JUNCTION	0.54	2.14	0	11:54	0.0103	
CB12 0.0103	-0.287	JUNCTION	0.54	0.54	0	11:54	0.0103	
CB13 0.0223	-0.275	JUNCTION	0.15	1.18	0	11:54	0.00267	
CB14 0.017	0.502	JUNCTION	0.44	0.89	0	11:54	0.00824	
CB15 0.0087	-0.157	JUNCTION	0.46	0.46	0	11:54	0.00869	
CB16 0.00271	-0.467	JUNCTION	0.15	0.15	0	11:54	0.00267	
CB17 0.558	-0.015	JUNCTION	0.00	24.60	0	11:55	0	

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB18		JUNCTION	0.99	24.66	0	11:55	0.019
0.558	-0.086						
CB19		JUNCTION	3.75	22.13	0	11:55	0.0749
0.501	-0.042						
CB2		JUNCTION	0.65	3.40	0	11:54	0.012
0.0663	0.081						
CB20		JUNCTION	0.00	14.34	0	11:54	0
0.309	-0.611						
CB21		JUNCTION	1.45	7.16	0	11:54	0.028
0.145	0.403						
CB22		JUNCTION	1.41	5.79	0	11:54	0.0273
0.117	-0.059						
CB23		JUNCTION	3.09	4.55	0	11:54	0.0603
0.089	-0.192						
CB24		JUNCTION	1.46	1.46	0	11:54	0.0288
0.0288	0.306						
CB25		JUNCTION	0.00	1.77	0	11:54	0
0.0376	0.136						
CB26		JUNCTION	0.22	0.44	0	11:54	0.00407
0.00817	-0.111						
CB27		JUNCTION	0.22	0.22	0	11:54	0.00407
0.0041	-0.190						
CB28		JUNCTION	0.73	1.46	0	11:54	0.0147
0.0294	-0.234						
CB29		JUNCTION	0.73	0.73	0	11:54	0.0147
0.0147	-0.141						
CB3		JUNCTION	0.61	0.61	0	11:54	0.0113
0.0114	-0.198						
CB30		JUNCTION	0.00	5.41	0	11:54	0
0.116	-0.057						
CB31		JUNCTION	2.56	5.57	0	11:54	0.051
0.116	-0.236						
CB32		JUNCTION	0.00	3.25	0	11:54	0
0.0648	0.134						
CB33		JUNCTION	0.45	1.21	0	11:54	0.00852
0.0231	0.036						
CB34		JUNCTION	0.76	0.76	0	11:54	0.0146
0.0146	-0.078						
CB35		JUNCTION	0.73	2.13	0	11:54	0.0138
0.0417	-0.015						
CB36		JUNCTION	1.42	1.42	0	11:54	0.0279
0.0279	-0.047						
CB37		JUNCTION	0.00	5.96	0	11:54	0
0.118	0.523						
CB38		JUNCTION	0.37	2.46	0	11:54	0.00694
0.0475	-0.022						
CB39		JUNCTION	0.40	2.11	0	11:54	0.00739
0.0406	0.046						
CB4		JUNCTION	2.15	2.15	0	11:54	0.0431
0.0431	0.387						
CB40		JUNCTION	1.27	1.27	0	11:54	0.0247
0.0247	-0.023						
CB41		JUNCTION	0.45	0.45	0	11:54	0.00855
0.00855	-0.009						
CB42		JUNCTION	0.19	3.56	0	11:54	0.00339
0.0701	0.030						
CB43		JUNCTION	0.00	3.40	0	11:54	0
0.0667	-0.040						
CB44		JUNCTION	0.29	0.80	0	11:54	0.00554
0.0151	0.011						

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB45		JUNCTION	0.50	0.50	0	11:54	0.00959
0.00959	-0.004						
CB46		JUNCTION	0.79	2.61	0	11:54	0.0151
0.0516	0.009						
CB47		JUNCTION	1.82	1.82	0	11:54	0.0365
0.0365	-0.001						
CB48		JUNCTION	0.00	2.18	0	11:53	0
0.0482	0.385						
CB49		JUNCTION	0.45	0.45	0	11:54	0.0084
0.00844	-0.013						
CB5		JUNCTION	3.20	7.30	0	11:54	0.0641
0.151	0.145						
CB50		JUNCTION	0.45	1.99	0	11:53	0.0084
0.0396	-0.013						
CB51		JUNCTION	0.24	1.60	0	11:54	0.00436
0.0309	-0.202						
CB52		JUNCTION	0.67	1.14	0	11:54	0.0129
0.0219	0.017						
CB53		JUNCTION	0.47	0.47	0	11:54	0.00895
0.00896	-0.016						
CB54		JUNCTION	0.24	0.24	0	11:54	0.00436
0.0044	0.140						
CB55		JUNCTION	0.00	29.73	0	11:54	0
0.6	-0.033						
CB56		JUNCTION	1.12	27.59	0	11:54	0.0222
0.549	-0.046						
CB57		JUNCTION	0.41	26.46	0	11:54	0.00801
0.527	-0.052						
CB58		JUNCTION	0.00	21.69	0	11:54	0
0.441	-0.058						
CB59		JUNCTION	0.00	15.60	0	11:54	0
0.313	-0.345						
CB6		JUNCTION	0.87	4.32	0	11:54	0.0168
0.0871	-0.169						
CB60		JUNCTION	0.21	9.46	0	11:54	0.00351
0.188	0.214						
CB61		JUNCTION	3.05	3.05	0	11:54	0.0611
0.0611	-0.084						
CB62		JUNCTION	0.25	4.40	0	11:54	0.00474
0.0775	-0.039						
CB63		JUNCTION	0.00	4.12	0	11:54	0
0.0727	-0.086						
CB64		JUNCTION	0.00	4.07	0	11:54	0
0.0726	-0.079						
CB65		JUNCTION	0.78	4.00	0	11:54	0.0154
0.0726	-0.073						
CB66		JUNCTION	1.39	3.14	0	11:54	0.0268
0.0571	-0.091						
CB67		JUNCTION	3.10	3.10	0	11:54	0.0636
0.0636	0.011						
CB68		JUNCTION	3.15	3.15	0	11:54	0.0631
0.0631	-0.054						
CB69		JUNCTION	0.88	6.47	0	11:53	0.0167
0.126	0.113						
CB7		JUNCTION	0.49	3.48	0	11:54	0.00932
0.0701	-0.226						
CB70		JUNCTION	0.52	5.54	0	11:53	0.01
0.109	0.071						
CB71		JUNCTION	0.00	4.94	0	11:53	0
0.099	-0.042						

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB72		JUNCTION	4.59	4.59	0	11:54	0.0928
0.0928	-0.085						
CB73		JUNCTION	0.33	0.50	0	11:53	0.0061
0.0061	-0.337						
CB74		JUNCTION	0.19	0.63	0	11:53	0.00329
0.0107	-0.012						
CB75		JUNCTION	0.39	0.71	0	11:53	0.00734
0.00734	-0.316						
CB76		JUNCTION	0.46	5.74	0	11:54	0.00876
0.113	0.054						
CB77		JUNCTION	0.18	5.27	0	11:54	0.00327
0.104	-0.081						
CB78		JUNCTION	0.00	0.75	0	12:00	0
0.0112	-0.213						
CB79		JUNCTION	0.58	0.79	0	11:53	0.011
0.0111	-0.189						
CB8		JUNCTION	0.41	3.05	0	11:54	0.00775
0.0609	0.111						
CB80		JUNCTION	0.27	4.50	0	11:54	0.00497
0.0901	-0.049						
CB81		JUNCTION	0.00	4.24	0	11:54	0
0.0851	-0.041						
CB82		JUNCTION	1.89	4.45	0	11:54	0.0381
0.0851	-0.056						
CB83		JUNCTION	0.00	2.53	0	11:54	0
0.0508	0.059						
CB84		JUNCTION	2.57	2.57	0	11:54	0.0508
0.0508	-0.048						
CB85		JUNCTION	0.00	1.66	0	11:54	0
0.0302	-0.195						
CB86		JUNCTION	1.57	1.57	0	11:54	0.0302
0.0302	-0.137						
CB88		JUNCTION	2.56	2.56	0	11:54	0.0468
0.0469	-0.137						
CB9		JUNCTION	1.86	1.86	0	11:54	0.0377
0.0377	-0.131						
CB999		JUNCTION	4.96	4.96	0	11:54	0.103
0.103	-0.724						
OF_North		OUTFALL	0.00	4.14	0	12:13	0
0.049	0.000						
OF_South		OUTFALL	0.00	0.80	0	13:00	0
0.0104	0.000						
OFTrail		OUTFALL	5.07	5.07	0	11:54	0.101
0.101	0.000						
CMPNorth		STORAGE	0.00	34.52	0	11:54	0
0.704	-0.040						
CMPSouth		STORAGE	0.00	37.80	0	11:54	0
0.881	-0.045						

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown	Min. Depth Below Rim
			Feet	Feet

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB1	JUNCTION	12.24	1.924	0.710
CB10	JUNCTION	6.20	0.780	1.882
CB11	JUNCTION	11.42	1.732	2.189
CB12	JUNCTION	8.77	1.274	2.220
CB13	JUNCTION	10.88	1.620	2.238
CB14	JUNCTION	8.33	1.209	1.524
CB15	JUNCTION	6.15	0.764	1.534
CB16	JUNCTION	8.07	1.165	2.268
CB17	JUNCTION	12.49	1.980	0.480
CB18	JUNCTION	12.28	1.906	0.565
CB19	JUNCTION	12.24	1.883	1.172
CB2	JUNCTION	10.24	1.506	0.464
CB20	JUNCTION	6.29	0.809	3.327
CB21	JUNCTION	6.08	0.752	2.017
CB22	JUNCTION	5.53	0.582	2.049
CB23	JUNCTION	5.81	0.671	1.756
CB25	JUNCTION	9.98	1.467	1.683
CB26	JUNCTION	8.24	1.195	2.175
CB27	JUNCTION	4.15	0.226	2.181
CB28	JUNCTION	9.02	1.317	2.233
CB29	JUNCTION	4.72	0.359	2.241
CB3	JUNCTION	7.65	1.106	0.586
CB30	JUNCTION	11.79	1.776	0.543
CB31	JUNCTION	9.16	1.334	1.780
CB32	JUNCTION	6.57	0.889	2.096
CB33	JUNCTION	6.44	0.849	2.538
CB34	JUNCTION	4.66	0.344	2.674
CB35	JUNCTION	6.99	1.015	2.771
CB36	JUNCTION	5.33	0.522	2.947
CB37	JUNCTION	1.06	0.036	3.858
CB4	JUNCTION	8.51	1.236	0.481
CB48	JUNCTION	6.20	0.786	3.742
CB49	JUNCTION	3.63	0.135	3.676
CB5	JUNCTION	12.29	1.936	0.227
CB50	JUNCTION	5.86	0.693	3.698
CB51	JUNCTION	3.50	0.118	2.622
CB52	JUNCTION	3.98	0.208	2.625
CB55	JUNCTION	12.59	1.953	0.696
CB56	JUNCTION	12.54	1.931	0.350
CB57	JUNCTION	12.42	1.902	0.416
CB58	JUNCTION	11.71	1.763	0.621
CB59	JUNCTION	10.43	1.566	1.551
CB6	JUNCTION	8.55	1.243	1.676
CB60	JUNCTION	8.68	1.341	0.704
CB61	JUNCTION	8.62	1.335	1.260
CB62	JUNCTION	12.60	1.956	0.955
CB63	JUNCTION	12.28	1.866	0.103
CB64	JUNCTION	11.01	1.602	0.355
CB65	JUNCTION	10.38	1.502	1.077
CB66	JUNCTION	9.70	1.395	1.104
CB67	JUNCTION	11.11	1.642	0.292
CB68	JUNCTION	11.78	1.778	0.311
CB69	JUNCTION	8.87	1.320	2.040
CB7	JUNCTION	7.75	1.122	1.742
CB70	JUNCTION	9.62	1.679	1.933
CB71	JUNCTION	8.87	1.825	1.664

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

CB72	JUNCTION	6.64	2.627	0.000
CB73	JUNCTION	7.28	1.540	1.738
CB74	JUNCTION	8.28	1.284	0.893
CB75	JUNCTION	7.42	1.570	0.544
CB76	JUNCTION	9.59	1.540	0.896
CB77	JUNCTION	8.02	1.682	1.091
CB78	JUNCTION	7.30	1.514	1.889
CB79	JUNCTION	4.96	1.171	1.627
CB8	JUNCTION	8.02	1.161	1.921
CB80	JUNCTION	7.36	1.609	0.703
CB81	JUNCTION	7.20	1.605	1.375
CB82	JUNCTION	6.27	1.453	0.000
CB83	JUNCTION	12.05	1.809	0.806
CB84	JUNCTION	7.91	1.102	0.956
CB85	JUNCTION	9.19	1.391	0.244
CB86	JUNCTION	8.72	1.363	0.014
CB88	JUNCTION	5.42	1.498	0.000
CB9	JUNCTION	5.67	0.621	1.530
CB999	JUNCTION	12.54	1.938	1.562

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate CFS	Time of Max Occurrence	Total Flood Volume 10^6 gal	Maximum Ponded Depth
				10^6 gal	Feet
CB82	0.01	0.95	0 11:53	0.000	0.000
CB88	0.01	1.64	0 11:53	0.000	0.000

Storage Volume Summary

Max	Maximum	Average	Avg	Evap	Exfil	Maximum	Max	Time of
Occurrence	Outflow	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Storage	Unit	1000 ft ³	Full	Loss	Loss	1000 ft ³	Full	days
hr:min	CFS							
CMPNorth		7.911	20.2	0.0	93.1	37.273	95.1	0
12:13	5.13							
CMPSouth		10.582	18.8	0.0	98.9	50.474	89.8	0
13:00	2.16							

Outfall Loading Summary

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

Outfall Node	Flow Freq	Avg Flow	Max Flow	Total Volume
	Pcnt	CFS	CFS	10^6 gal
OF_North	2.76	0.92	4.14	0.049
OF_South	1.54	0.35	0.80	0.010
OFTrail	35.96	0.14	5.07	0.101
System	13.42	1.41	5.07	0.160

Link Flow Summary

Link	Type	Maximum Flow CFS	Time of Max Occurrence	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
C1	CONDUIT	13.49	0 11:54	4.68	0.37	1.00
C2	CONDUIT	4.92	0 11:54	2.65	0.10	1.00
C3	CONDUIT	24.57	0 11:55	5.90	1.03	1.00
C4	CONDUIT	0.80	0 13:00	1.12	0.00	0.03
C5	CONDUIT	29.69	0 11:54	6.70	0.84	1.00
C6	CONDUIT	4.14	0 12:13	3.35	0.02	0.10
SP1	CONDUIT	2.81	0 11:54	2.40	0.25	1.00
SP10	CONDUIT	1.63	0 11:53	1.57	0.12	1.00
SP11	CONDUIT	0.54	0 11:54	3.42	0.03	1.00
SP12	CONDUIT	1.06	0 11:53	2.45	0.14	1.00
SP13	CONDUIT	0.88	0 11:54	3.38	0.27	1.00
SP14	CONDUIT	0.46	0 11:54	2.35	0.10	1.00
SP15	CONDUIT	0.15	0 11:54	2.85	0.03	1.00
SP16	CONDUIT	24.60	0 11:55	5.11	0.75	1.00
SP17	CONDUIT	22.13	0 11:55	4.51	1.26	1.00
SP18	CONDUIT	13.71	0 11:55	2.91	0.47	1.00
SP19	CONDUIT	6.78	0 11:54	3.37	0.54	1.00
SP2	CONDUIT	0.61	0 11:54	2.13	0.06	1.00
SP20	CONDUIT	5.72	0 11:54	2.72	0.28	1.00
SP21	CONDUIT	4.39	0 11:54	4.51	0.32	1.00
SP22	CONDUIT	1.45	0 11:54	4.17	0.31	0.65
SP23	CONDUIT	1.67	0 11:55	2.30	0.26	1.00
SP24	CONDUIT	0.42	0 11:52	3.26	0.09	1.00
SP25	CONDUIT	0.22	0 11:54	2.20	0.03	1.00
SP26	CONDUIT	1.38	0 11:54	2.26	0.10	1.00
SP27	CONDUIT	0.73	0 11:54	2.08	0.04	1.00
SP28	CONDUIT	5.41	0 11:54	2.66	0.29	1.00
SP29	CONDUIT	5.41	0 11:54	2.68	0.29	1.00
SP3	CONDUIT	2.14	0 11:54	3.58	0.25	1.00
SP30	CONDUIT	3.13	0 11:54	3.72	0.32	1.00
SP31	CONDUIT	1.16	0 11:54	3.85	0.25	1.00
SP32	CONDUIT	0.77	0 11:54	2.84	0.17	1.00
SP33	CONDUIT	2.09	0 11:54	4.59	0.45	1.00
SP34	CONDUIT	1.40	0 11:54	3.20	0.30	1.00

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP35	CONDUIT	5.87	0	11:54	4.62	0.61	1.00
SP36	CONDUIT	2.45	0	11:54	2.47	0.18	0.91
SP37	CONDUIT	2.10	0	11:54	4.88	0.45	0.77
SP38	CONDUIT	1.26	0	11:54	3.45	0.27	0.47
SP39	CONDUIT	0.45	0	11:54	1.74	0.05	0.37
SP4	CONDUIT	6.95	0	11:54	3.21	0.50	1.00
SP40	CONDUIT	3.53	0	11:54	3.04	0.33	0.97
SP41	CONDUIT	3.39	0	11:54	3.59	0.32	0.65
SP42	CONDUIT	0.79	0	11:54	3.15	0.17	0.42
SP43	CONDUIT	0.50	0	11:54	2.29	0.11	0.33
SP44	CONDUIT	2.60	0	11:54	5.19	0.56	0.61
SP45	CONDUIT	1.82	0	11:54	3.62	0.39	0.61
SP46	CONDUIT	2.12	0	11:57	2.70	0.31	1.00
SP47	CONDUIT	0.45	0	11:54	3.56	0.07	1.00
SP48	CONDUIT	1.75	0	11:52	2.56	0.20	1.00
SP49	CONDUIT	1.55	0	11:53	2.59	0.18	1.00
SP5	CONDUIT	4.16	0	11:54	2.53	0.22	1.00
SP50	CONDUIT	1.13	0	11:54	3.15	0.39	1.00
SP51	CONDUIT	0.47	0	11:54	1.97	0.07	0.64
SP52	CONDUIT	0.24	0	11:54	2.75	0.05	0.95
SP53	CONDUIT	27.60	0	11:54	5.63	1.52	1.00
SP54	CONDUIT	26.48	0	11:54	5.40	1.50	1.00
SP55	CONDUIT	21.70	0	11:54	4.42	1.23	1.00
SP56	CONDUIT	15.60	0	11:54	3.18	0.88	1.00
SP57	CONDUIT	9.48	0	11:54	3.08	0.83	1.00
SP58	CONDUIT	3.06	0	11:53	3.23	0.22	1.00
SP59	CONDUIT	4.43	0	11:54	2.94	0.59	1.00
SP6	CONDUIT	3.46	0	11:54	2.94	0.19	1.00
SP60	CONDUIT	4.15	0	11:54	2.44	0.56	1.00
SP61	CONDUIT	4.12	0	11:54	2.64	0.48	1.00
SP62	CONDUIT	4.07	0	11:54	2.88	0.64	1.00
SP63	CONDUIT	3.23	0	11:54	2.27	0.51	1.00
SP64	CONDUIT	3.09	0	11:54	3.25	0.32	1.00
SP65	CONDUIT	3.15	0	11:54	3.27	0.33	1.00
SP66	CONDUIT	6.51	0	11:53	2.58	0.57	1.00
SP67	CONDUIT	5.60	0	11:53	3.43	0.75	1.00
SP68	CONDUIT	5.02	0	11:53	2.84	0.67	1.00
SP69	CONDUIT	4.59	0	11:54	3.07	0.61	1.00
SP7	CONDUIT	3.01	0	11:54	4.13	0.31	1.00
SP70	CONDUIT	0.39	0	11:53	2.92	0.07	1.00
SP71	CONDUIT	0.63	0	11:53	2.47	0.19	1.00
SP72	CONDUIT	0.44	0	11:53	2.09	0.14	1.00
SP73	CONDUIT	5.75	0	11:54	3.25	0.90	1.00
SP74	CONDUIT	5.30	0	11:54	3.00	0.83	1.00
SP75	CONDUIT	0.76	0	12:00	3.45	0.12	1.00
SP76	CONDUIT	0.75	0	12:00	3.37	0.13	1.00
SP77	CONDUIT	4.52	0	11:54	2.63	0.46	1.00
SP78	CONDUIT	4.25	0	11:54	2.58	0.67	1.00
SP79	CONDUIT	4.24	0	11:54	2.80	0.67	1.00
SP8	CONDUIT	1.85	0	11:54	2.84	0.19	1.00
SP80	CONDUIT	2.51	0	11:54	4.37	0.67	1.00
SP81	CONDUIT	2.53	0	11:54	4.19	0.68	1.00
SP82	CONDUIT	1.77	0	11:54	1.33	0.28	1.00
SP83	CONDUIT	1.66	0	11:54	1.57	0.26	1.00
SP85	CONDUIT	2.56	0	11:54	1.98	0.40	1.00
SP9	CONDUIT	0.79	0	11:54	4.18	0.17	1.00

Flow Classification Summary

		Adjusted	Fraction of Time in Flow Class							
Inlet Conduit Ctrl	Length	/Actual	Up	Down	Sub	Sup	Up	Down	Norm	
		Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	
C1 0.00	1.00	0.00	0.00	0.00	0.28	0.00	0.00	0.72	0.00	
C2 0.00	1.00	0.00	0.00	0.00	0.28	0.00	0.00	0.72	0.00	
C3 0.00	1.00	0.00	0.00	0.00	0.27	0.00	0.00	0.73	0.00	
C4 0.00	1.00	0.98	0.00	0.00	0.00	0.02	0.00	0.00	0.00	
C5 0.00	1.00	0.00	0.00	0.00	0.28	0.00	0.00	0.72	0.00	
C6 0.00	1.00	0.97	0.00	0.00	0.00	0.03	0.00	0.00	0.00	
SP1 0.00	1.00	0.00	0.00	0.00	0.26	0.00	0.00	0.74	0.02	
SP10 0.00	1.00	0.00	0.00	0.00	0.27	0.00	0.00	0.73	0.02	
SP11 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.04	
SP12 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.02	
SP13 0.00	1.00	0.00	0.00	0.00	0.21	0.00	0.00	0.79	0.03	
SP14 0.00	1.00	0.00	0.06	0.00	0.94	0.00	0.00	0.00	0.84	
SP15 0.00	1.00	0.00	0.01	0.00	0.21	0.00	0.00	0.78	0.65	
SP16 0.00	1.00	0.00	0.09	0.00	0.91	0.00	0.00	0.00	0.57	
SP17 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
SP18 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.77	
SP19 0.00	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.78	0.01	
SP2 0.00	1.00	0.00	0.00	0.00	0.23	0.00	0.00	0.77	0.04	
SP20 0.00	1.00	0.00	0.19	0.00	0.81	0.00	0.00	0.00	0.75	
SP21 0.00	1.00	0.00	0.00	0.00	0.19	0.00	0.00	0.81	0.01	
SP22 0.00	1.00	0.00	0.00	0.00	0.17	0.00	0.00	0.83	0.17	
SP23 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.02	
SP24	1.00	0.00	0.00	0.00	0.20	0.00	0.00	0.80	0.01	0.

Paisley Park Subdivision 100-year, 24-hour PCSWMM Results

SP25 0.00	1.00	0.00	0.00	0.00	0.95	0.05	0.00	0.00	0.88
SP26 0.00	1.00	0.00	0.12	0.00	0.88	0.00	0.00	0.00	0.76
SP27 0.00	1.00	0.00	0.00	0.00	0.85	0.15	0.00	0.00	0.27
SP28 0.00	1.00	0.00	0.00	0.00	0.26	0.00	0.00	0.74	0.00
SP29 0.00	1.00	0.00	0.04	0.00	0.94	0.02	0.00	0.00	0.62
SP3 0.00	1.00	0.00	0.00	0.00	0.23	0.00	0.00	0.77	0.02
SP30 0.00	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.77	0.03
SP31 0.00	1.00	0.00	0.00	0.00	0.18	0.00	0.00	0.82	0.02
SP32 0.00	1.00	0.00	0.00	0.00	0.85	0.15	0.00	0.00	0.87
SP33 0.00	1.00	0.00	0.00	0.00	0.18	0.00	0.00	0.82	0.01
SP34 0.00	1.00	0.00	0.00	0.00	0.86	0.14	0.00	0.00	0.85
SP35 0.00	1.00	0.00	0.00	0.00	0.21	0.00	0.00	0.79	0.07
SP36 0.00	1.00	0.00	0.16	0.00	0.84	0.00	0.00	0.00	0.87
SP37 0.00	1.00	0.00	0.00	0.00	0.09	0.00	0.00	0.91	0.02
SP38 0.00	1.00	0.00	0.00	0.00	0.76	0.24	0.00	0.00	1.00
SP39 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00
SP4 0.00	1.00	0.00	0.00	0.00	0.27	0.00	0.00	0.73	0.01
SP40 0.00	1.00	0.00	0.12	0.00	0.88	0.00	0.00	0.00	0.80
SP41 0.00	1.00	0.00	0.00	0.00	0.80	0.20	0.00	0.00	0.17
SP42 0.00	1.00	0.00	0.00	0.00	0.06	0.00	0.00	0.94	0.00
SP43 0.00	1.00	0.00	0.00	0.00	0.86	0.14	0.00	0.00	0.99
SP44 0.00	1.00	0.00	0.00	0.00	0.05	0.00	0.00	0.94	0.05
SP45 0.00	1.00	0.00	0.00	0.00	0.67	0.33	0.00	0.00	0.98
SP46 0.00	1.00	0.00	0.00	0.00	0.21	0.00	0.00	0.79	0.02
SP47 0.00	1.00	0.00	0.00	0.00	0.18	0.00	0.00	0.82	0.07
SP48 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.77
SP49 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.26
SP5 0.00	1.00	0.00	0.28	0.00	0.72	0.00	0.00	0.00	0.77
SP50 0.00	1.00	0.00	0.00	0.00	0.12	0.00	0.00	0.88	0.01
SP51 0.00	1.00	0.00	0.15	0.00	0.85	0.00	0.00	0.00	0.94

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP52 0.00	1.00	0.00	0.00	0.00	0.13	0.00	0.00	0.87	0.04
SP53 0.00	1.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00	0.55
SP54 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.14
SP55 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.59
SP56 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.41
SP57 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.01
SP58 0.00	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.78	0.01
SP59 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.00
SP6 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.10
SP60 0.00	1.00	0.00	0.14	0.00	0.86	0.00	0.00	0.00	0.62
SP61 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.20
SP62 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.55
SP63 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.21
SP64 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.01
SP65 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.01
SP66 0.00	1.00	0.00	0.00	0.00	0.24	0.00	0.00	0.76	0.01
SP67 0.00	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.78	0.01
SP68 0.00	1.00	0.00	0.07	0.00	0.93	0.00	0.00	0.00	0.65
SP69 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.32
SP7 0.00	1.00	0.00	0.00	0.00	0.21	0.00	0.00	0.79	0.01
SP70 0.00	1.00	0.00	0.00	0.00	0.19	0.00	0.00	0.81	0.02
SP71 0.00	1.00	0.00	0.00	0.00	0.20	0.00	0.00	0.80	0.01
SP72 0.00	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.82
SP73 0.00	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.78	0.00
SP74 0.00	1.00	0.00	0.13	0.00	0.87	0.00	0.00	0.00	0.74
SP75 0.00	1.00	0.00	0.00	0.00	0.18	0.00	0.00	0.82	0.01
SP76 0.00	1.00	0.00	0.00	0.00	0.83	0.17	0.00	0.00	0.73
SP77 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.25
SP78 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.51
SP79 0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.17

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP8	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.00	0.82
0.00										
SP80	1.00	0.00	0.00	0.00	0.22	0.00	0.00	0.78	0.01	
0.00										
SP81	1.00	0.00	0.00	0.00	0.84	0.15	0.00	0.00	0.80	
0.00										
SP82	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.75	
0.00										
SP83	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.06	
0.00										
SP85	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.82	
0.00										
SP9	1.00	0.00	0.00	0.00	0.18	0.00	0.00	0.82	0.02	
0.00										

Conduit Surcharge Summary

Conduit	Hours Full			Hours	Hours
	Both Ends	Upstream	Dnstream	Above Normal Flow	Full Capacity Limited
C1	12.24	12.24	12.57	0.01	0.01
C2	12.54	12.54	12.84	0.01	0.01
C3	12.44	12.49	12.57	0.03	0.08
C5	12.54	12.59	12.84	0.01	0.08
SP1	10.24	10.24	12.24	0.01	0.01
SP10	11.42	11.42	13.12	0.01	0.01
SP11	8.77	8.77	12.44	0.01	0.01
SP12	10.88	10.88	12.44	0.01	0.01
SP13	8.33	8.33	12.03	0.01	0.01
SP14	6.15	6.15	8.33	0.01	0.01
SP15	8.07	8.07	12.03	0.01	0.01
SP16	12.23	12.28	12.49	0.01	0.09
SP17	12.19	12.24	12.28	0.16	0.18
SP18	6.29	6.29	12.24	0.01	0.01
SP19	6.08	6.08	7.29	0.01	0.01
SP2	7.65	7.65	11.53	0.01	0.01
SP20	5.53	5.53	6.08	0.01	0.01
SP21	5.81	5.81	6.36	0.01	0.01
SP22	0.01	0.01	6.66	0.01	0.01
SP23	9.98	9.98	12.28	0.01	0.01
SP24	8.24	8.24	9.98	0.01	0.01
SP25	4.15	4.15	8.24	0.01	0.01
SP26	9.02	9.02	9.98	0.01	0.01
SP27	4.72	4.72	9.02	0.01	0.01
SP28	11.79	11.79	12.24	0.01	0.01
SP29	9.16	9.16	11.79	0.01	0.01
SP3	8.51	8.51	11.53	0.01	0.01
SP30	6.57	6.57	10.90	0.01	0.01
SP31	6.44	6.44	7.87	0.01	0.01
SP32	4.66	4.66	6.44	0.01	0.01
SP33	6.99	6.99	7.87	0.01	0.01
SP34	5.33	5.33	6.99	0.01	0.01
SP35	1.05	1.05	9.09	0.01	0.01

Paisley Park Subdivision
100-year, 24-hour PCSWMM Results

SP36	0.01	0.01	1.05	0.01	0.01
SP4	12.29	12.29	13.12	0.01	0.01
SP40	0.01	0.01	1.05	0.01	0.01
SP46	6.20	6.20	9.09	0.01	0.01
SP47	3.63	3.63	7.10	0.01	0.01
SP48	5.86	5.86	6.20	0.01	0.01
SP49	3.50	3.50	5.86	0.01	0.01
SP5	8.55	8.55	12.29	0.01	0.01
SP50	3.98	3.98	4.70	0.01	0.01
SP51	0.01	0.01	3.98	0.01	0.01
SP52	0.01	0.01	4.70	0.01	0.01
SP53	12.50	12.54	12.59	0.14	0.13
SP54	12.41	12.42	12.54	0.14	0.18
SP55	11.71	11.71	12.42	0.09	0.13
SP56	10.42	10.42	11.71	0.01	0.04
SP57	8.68	8.68	10.42	0.01	0.02
SP58	8.62	8.62	10.18	0.01	0.01
SP59	12.60	12.60	12.96	0.01	0.01
SP6	7.75	7.75	8.55	0.01	0.01
SP60	12.28	12.28	12.60	0.01	0.01
SP61	11.01	11.01	12.28	0.01	0.01
SP62	10.38	10.38	11.01	0.01	0.01
SP63	9.70	9.70	10.38	0.01	0.01
SP64	11.11	11.11	12.46	0.01	0.01
SP65	11.78	11.78	12.46	0.01	0.01
SP66	8.86	8.86	10.42	0.01	0.01
SP67	9.62	9.62	10.37	0.01	0.10
SP68	8.87	8.87	9.62	0.01	0.04
SP69	6.64	6.64	8.87	0.01	0.01
SP7	8.02	8.02	9.38	0.01	0.01
SP70	7.28	7.28	8.87	0.01	0.01
SP71	8.28	8.28	10.18	0.01	0.01
SP72	7.42	7.42	8.28	0.01	0.01
SP73	9.59	9.59	10.18	0.01	0.04
SP74	8.02	8.02	9.59	0.01	0.01
SP75	7.30	7.30	8.02	0.01	0.01
SP76	4.96	4.96	7.30	0.01	0.01
SP77	7.36	7.36	8.02	0.01	0.01
SP78	7.20	7.20	7.36	0.01	0.01
SP79	6.27	6.27	7.20	0.01	0.01
SP8	5.67	5.67	8.02	0.01	0.01
SP80	12.04	12.05	12.59	0.01	0.01
SP81	7.91	7.91	12.05	0.01	0.01
SP82	9.19	9.19	9.70	0.01	0.01
SP83	8.71	8.71	9.19	0.01	0.01
SP85	5.42	5.42	6.27	0.01	0.01
SP9	6.20	6.20	8.02	0.01	0.01

Analysis begun on: Wed May 28 10:41:15 2025

Analysis ended on: Wed May 28 10:41:34 2025

Total elapsed time: 00:00:19